
Faculty for Computer Science, Electrical Engineering and Mathematics
Department of Computer Science
Database and Information Systems
Fürstenallee 11, 33102 Paderborn

Incremental Unidirectional
Model Transformation

via Graph Transformation
with eMoflon::IBeX

Master’s Thesis

in Partial Fulfillment of the Requirements for the
Degree of

Master of Science

by

Patrick Robrecht

submitted to

Jun.-Prof. Dr. Anthony Anjorin

and

Prof. Dr. Gregor Engels

Paderborn, July 12, 2018

c© 2018 Patrick Robrecht

Master’s Thesis by Patrick Robrecht
Course of studies: Computer Science

Supervisor: Jun.-Prof. Dr. Anthony Anjorin

First examiner: Jun.-Prof. Dr. Anthony Anjorin
Second examiner: Prof. Dr. Gregor Engels

Date of submission: July 12, 2018

Abstract

Model transformations are used to transform models into other models. They are fun-
damental for model-driven engineering (MDE) which raises the abstraction level from
programming to domain-specific languages. As models can be suitably represented as
graphs, graph transformation (GT) is a frequently used formalism to realize model trans-
formations. The approach is based on a rule set defining which graph patterns can be
replaced with other graph structures.

This thesis presents eMoflon::IBeX-GT, a new interpreter-based graph transformation
tool which supports model queries (i. e. finding patterns in the graph) as well as rule
applications modifying graph structures. An incremental pattern matcher is used to find
matches in the host graph. The support for incrementality is important to solve tasks
which require permanent observation of all matches efficiently.

The graph transformation patterns and rules can be invoked from Java code via a typed
API generated from the textual specification. Pattern refinement is a modularity concept
to reduce duplications in pattern specifications.

There are many GT tools, but to the best of the author’s knowledge none of them sup-
ports incrementality in combination with model queries and rule applications on attributed
typed graphs via a typed API.

This thesis explores which tasks can be solved best via an incremental graph transfor-
mation tool and how the tool can be seamlessly integrated into Java code.

Contents

1 Introduction 7
1.1 Graphs and Graph Transformations . 7
1.2 eMoflon::IBeX . 7
1.3 Running Example: She Remembered Caterpillars 8
1.4 Contribution . 9
1.5 Structure of the Thesis . 10

2 Fundamentals of Graph Transformations 11
2.1 Typed Graphs . 11
2.2 Rule Applications . 13
2.3 Application Conditions . 17

3 Requirements 21

4 Related Work 24
4.1 Graph Transformation Tools . 24
4.2 Comparison of Existing Graph Transformation Tools 25

5 Patterns in eMoflon::IBeX-GT 27
5.1 eMoflon::IBeX Architecture . 27
5.2 Transformation of Graph Transformation Rules into IBeX Patterns 28

5.2.1 Nodes and References . 29
5.2.2 Attribute Assignments and Conditions 32
5.2.3 Applications Conditions . 33

5.2.3.1 Negative Application Conditions 33
5.2.3.2 Positive Application Conditions 35
5.2.3.3 Disjunctions . 37

5.2.4 Pattern Refinement . 39
5.3 Pattern Networks . 44

5.3.1 IBeX Pattern Networks . 45
5.3.2 Democles Pattern Networks . 47

6 Graph Transformation Java API 49
6.1 Code Generation for a Typed Java API . 49
6.2 Graph Transformation Interpreter . 51
6.3 Usage of the API . 52

6.3.1 Initialization and Conventions on EMF Resources 52
6.3.2 Model Queries . 53
6.3.3 Rule Applications and Pushout Approaches (DPO vs. SPO) 54
6.3.4 Node Bindings . 54
6.3.5 Parameters . 56

4 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

6.4 Exploiting the Incrementality . 56
6.4.1 Notification System . 56
6.4.2 Instant Automatic Rule Application 57

7 Evaluation 59
7.1 Compliance with the Requirements . 59
7.2 Correctness of Graph Transformation . 60
7.3 Validation in the Textual Editor . 62
7.4 Performance and Scalability . 62
7.5 Usability and End-User Feedback . 65

7.5.1 Experience of the participants . 65
7.5.2 Textual and Visual Syntax . 65
7.5.3 Language Features . 66
7.5.4 Potential for the Usage in Java Applications 67
7.5.5 Handbook . 68

8 Conclusion and Future Work 69
8.1 Evaluation of Performance . 69
8.2 Optimization of the Pattern Network . 69
8.3 Shared Patterns with eMoflon::IBeX-TGG 69
8.4 Applications using Graph Transformation and TGG 70
8.5 Expressiveness of the Graph Transformation Rules 70
8.6 Improvements to the Editor . 71

A List of Projects 72

B List of Figures 73

C List of Tables 75

D Listings 76

E Bibliography 77

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 5

Declaration of Authorship

I hereby declare that I prepared this thesis entirely on my own and have not used outside
sources without declaration in the text. Any concepts or quotations applicable to these
sources are clearly attributed to them. This thesis has not been submitted in the same or
substantially similar version, not even in part, to any other authority for grading and has
not been published elsewhere.

Paderborn, July 12, 2018

Patrick Robrecht

6 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

1 Introduction

Model-driven engineering (MDE) is an approach to software development which focuses on
the specification of software artifacts in the application domain. It raises the abstraction
level from programming to domain-specific modeling languages by the use of models for
the representation of knowledge. The MDE approach aims for a simplification of the
specification process and improvement of the communication between different people and
teams working on a system (cf. [SV06], p. 13; [HMS05]).

Model transformations [CH06] can be used to transform models into other models,
e. g. modifying an existing model or generating code from a model. Other application
areas are web applications [Koz16], handling XML documents [Kur05], interface design,
and many others [CFH+08]. Because of the focus on models as primary artifacts, model
transformations are a fundamental part of MDE.

1.1 Graphs and Graph Transformations

Since many models can be represented as graphs (e. g. UML1 or XML documents), graph
transformations (GT) are a frequently used formalism to implement model transforma-
tions. They consist of a set of graph transformation rules of the form L → R. The
left-hand side L (called pattern graph) specifies the context in which the rule may be
applied to a given host graph, while the right-hand side R defines the elements with which
the context is replaced during rule application.2

Using this declarative approach for the specification of model transformation, a rule
engine can be used to find a match in the host graph conforming to the pattern graph L
and apply the rule.

1.2 eMoflon::IBeX

The graph transformation tool we3 shall work with in this thesis is the Eclipse-based tool
eMoflon, which is currently being reimplemented in the eMoflon::IBeX project.4 Unlike
the code generation based eMoflon::SDM/TiE,5 eMoflon::IBeX uses an interpreter which
is completely based on incremental pattern matching.

1cp. UML 2.5 [Obj15], Annex E
2Formal foundations as needed for this thesis will be introduced in Chapter 2.
3Despite the use of the authorial we in this thesis, it has been written by its single author, as stated in

the declaration of authorship. The authorial we serves to increase the readability of the thesis.
4see https://github.com/eMoflon/emoflon-ibex
5see https://github.com/eMoflon/emoflon-tool.

eMoflon::SDM refers to the story driven modeling part (graph transformations and control flow) of the
latest eMoflon release using Enterprise Architect and code generation.
eMoflon::TiE (Tool Integration Environment) allows to specify TGG rules in textual syntax. It relies
on code generation and a transformation to SDMs.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 7

https://github.com/eMoflon/emoflon-ibex
https://github.com/eMoflon/emoflon-tool

eMoflon::TiE and eMoflon::IBeX provide a textual editor for transformation rules with
syntax highlighting and checks for compliance to the meta-models specified in Ecore, the
UML-like meta-modeling language of the Eclipse Modeling Framework (EMF). A graphical
visualization of specified rules generated from the textual syntax is provided for better
understandability.

While eMoflon::SDM/TiE supports both unidirectional graph transformations and bidi-
rectional transformations between two different meta-models based on Triple Graph Gram-
mars (TGGs)6 as an underlying formalism, only the transformations with TGGs have been
ported to eMoflon::IBeX (herein after referred to as eMoflon::IBeX-TGG). The goal of
this thesis is to extend eMoflon::IBeX by unidirectional model transformations modifying
a model instance by applying graph transformation rules.

1.3 Running Example: She Remembered Caterpillars

The running example used in this thesis is based on a simplified version of the game
She Remembered Caterpillars.7 The use of graph transformation for this game has been
suggested and applied by Zündorf et al. [PGH+16]. An example instance of this game is
shown in Figure 1.1.8 The meta-model is shown in Figure 1.2 as a class diagram.

Figure 1.1: She Remembered Caterpillars Example

The She Remembered Caterpillars world contains simple and exit platforms which are
connected to neighboring platforms. Simple platforms can be connected via bridges and
walls as well.

The goal of the game is to move all characters to exit platforms. At the beginning,
characters are placed on arbitrary platforms. Only one character may stand on each exit
platform at the end.

6TGGs [Sch95] are a grammar-based approach to specify a consistency relation between two models.
From the specification different operationalizations such as model generation, model synchronization,
and checking the consistency of existing models can be derived.

7http://caterpillar.solutions/ or http://store.steampowered.com/app/470780/She_Remembered_

Caterpillars/. The rules describe only a limited subset of the actual game.
8Figure 1.1 is taken from the slides of the lecture “Fundamentals of Model-Driven Engineering” by

Anthony Anjorin, whose examples are partly inspired by [PGH+16].

8 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

http://caterpillar.solutions/
http://store.steampowered.com/app/470780/She_Remembered_Caterpillars/
http://store.steampowered.com/app/470780/She_Remembered_Caterpillars/

Characters, bridges and walls are colored blue, red or purple. The following rules define
how characters can be moved:

1. All characters can walk from their current platform to any neighboring one.

2. Blue and red characters can cross bridges having the same color as the character
and walk over walls which are not colored in the character color.

3. Purple characters can cross any bridge, but cannot walk through any wall.

4. If a red and a blue character stand on the same platform, they can be transformed
into one purple character.

5. A purple character can be transformed into a blue and a red character, both standing
on the same platform after the transformation.

Figure 1.2: She Remembered Caterpillars Class Diagram

All examples in the following chapters will use the She Remembered Caterpillars meta-
model. We will check constraints on models, create new models and write transformation
rules for the different steps of the game.

1.4 Contribution

The goal of this thesis is to implement and evaluate a new tool for unidirectional graph
transformations called eMoflon::IBeX-GT, which is based on an interpreter and incre-
mental pattern matching. The rules can be invoked from Java code via a typed Java API
generated from the textual rule specification.

eMoflon::IBeX-GT shall support simple patterns, rules, attribute assignments and con-
ditions, pattern refinement, and application conditions. For each of the mentioned features
the main steps for the implementation are:

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 9

1. the development of a textual editor for pattern and rule specifications and a graphical
visualization of them,

2. the definition of an IBeX pattern model, i. e. a pattern network specification inde-
pendent from a concrete pattern matching engine,

3. the implementation of the transformation from the editor specification into the IBeX
pattern model (and from the IBeX pattern model into the Democles representation),

4. the design and the generation a typed Java API,

5. the extension of the interpreter used for API execution,

6. establishing a JUnit test suite to show the successful usage for a set of examples,

7. and providing documentation for end-users.

As we plan to integrate the new tool into the eMoflon::IBeX toolsuite, we want to explore
and exploit the potential of Democles, the underlying incremental pattern matcher used
in eMoflon::IBeX-TGG already. The following research questions shall be investigated in
this thesis:

RQ 1 Which tasks are best solved using an incremental pattern matcher?

RQ 2 How can a GT and TGG tool be seamlessly integrated for developers and end users?

RQ 3 How can we integrate graph transformations seamlessly into Java code using the
power of Java 8 features such as streams?

1.5 Structure of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 introduces the theory on
graphs, graph transformations rules and their application. Our requirements specified in
Chapter 3 will be evaluated for existing graph transformation tools in Chapter 4. Chapter 5
deals with the transformation from the specification of patterns in the editor into pattern
networks. The generation of a typed API and the invocation from Java code via the API is
presented in Chapter 6. Chapter 7 evaluates the new tool with respect to the requirements,
correctness, and performance. Finally, we discuss future work in Chapter 8.

10 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

2 Fundamentals of Graph Transformations

This chapter introduces the formal definitions for graph transformations based on category
theory. The definitions are based on Ehrig et al. [EEPT06, pp. 21-47 and pp. 65-71] in a
slightly different notation used in the lecture “Fundamentals of Model-Driven Engineering”
by Anthony Anjorin.

2.1 Typed Graphs

Our models are attributed typed graphs. Typed graphs are formally introduced in the
following, while attributes are not formalized in this thesis. The interested reader is
referred to [HP16] or [AVS12] for a formalization of attributed graphs.

Definition 1 (Category)

A category C = (Ob,Arr, ; , id) consists of:

• a class Ob of objects,

• for each pair of objects A,B ∈ Ob, a class Arr(A,B) of arrows,
where f ∈ Arr(A,B) is denoted by f : A→ B,

• for all objects A,B,C ∈ Ob, a binary operation (for composing arrows):
; : Arr(A,B) ×Arr(B,C) → Arr(A,C),

• for each object A ∈ Ob, an identity arrow idA : A→ A,

such that the following conditions hold:

• Associativity.
∀A,B,C,D ∈ Ob. ∀f : A→ B, g : B → C, h : C → D. f ; (g ; h) = (f ; g) ; h.

• Identity.
∀A,B ∈ Ob. ∀f : A→ B. (idA ; f = f) ∧ (f ; idB = f).

In general, a category is a mathematical structure which has objects and morphisms. A
monomorphic arrow corresponds to an injective function.

Definition 2 (Monomorphism)

Let C = (Ob,Arr, ; , id) be a category.

An arrow f : X → Y is monomorphic, iff

∀ g : Z → X ∀h : Z → X [(h; f = g; f)⇒ (g = h)].

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 11

Z X Y

g

h

f

Figure 2.1: Monomorphism

Definition 3 (Graphs and Graph Morphisms)

A graph G = (V,E, src, trg) consists of a set V of nodes (vertices), a set E of edges,
and two functions src, trg : E → V that assign each edge a source node and a target
node, respectively.

Given graphs G = (V,E, src, trg) and G′ = (V ′, E′, src′, trg′), a graph morphism
f : G → G′ consists of two functions fV : V → V ′ and fE : E → E′ such that
src ; fV = fE ; src′ and trg ; fV = fE ; trg′.

Graphs = (ObGraphs, ArrGraphs, ; Graphs, idGraphs) consists of:

• graphs ObGraphs,

• graph morphisms ArrGraphs,

• for G,G′, G′′ ∈ ObGraphs, f = G→ G′, g = G′ → G′′ ∈ ArrGraphs, ; Graphs(f, g)
is defined as f ; Graphs g := (fV ; gV , fE ; gE),

• for G = (V,E, src, trg) ∈ ObGraphs, idG : G→ G is defined as idG := (idV , idE).

E

E′

V

V ′

G = (E, V, src, trg)

G′ = (E′, V ′, src′, trg′)

src

trg
fE fV

src’

trg’

f = (fV , fE)

Figure 2.2: Graph Morphism

Definition 4 (Typed Graphs and Typed Graph Morphisms)

A type graph is a distinguished graph TG = (VTG, ETG, srcTG, trgTG).

A typed graph is a pair Ĝ = (G, type) of a graph G together with a graph morphism
type : G→ TG.

Given typed graphs Ĝ = (G, type) and Ĝ′ = (G′, type′), a typed graph morphism
f : Ĝ→ Ĝ′ is a graph morphism f : G→ G′ such that f ; type′ = type.

TGraphs = (ObTGraphs, ArrTGraphs, ; TGraphs, idTGraphs) consists of:

• typed graphs ObTGraphs,

12 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

• typed graph morphisms ArrTGraphs,

• ; TGraphs := ; Graphs,

• idTGraphs := idGraphs.

Note that Graphs and TGraphs are categories according to Definition 1.

TG

G G′

type

f

type’

Figure 2.3: Typed Graph Morphism

Figure 2.4 shows the type graph for the She Remembered Caterpillars meta-model in-
troduced in Section 1.3. For clarity only the types used in the following examples are
included. A typed graph conforming to this type graph is shown in Figure 2.5. Each node
is denoted by its name and its type, separated by a colon. The edge labels are omitted
in the graphs as they are comprehensible without ambiguity based on the types of their
source and target node.

Game

Character Platform

characters platforms

standsOn
neighbors

Figure 2.4: Type Graph for She Remembered Caterpillars (simplified)

g: Game

p: Platformc: Character q: Platform

Figure 2.5: Typed Graph Instance

2.2 Rule Applications

A set of rules defines which model modifications are allowed in the graph transformation
system. The semantics of rule applications is given by the following definitions.

Definition 5 (Pushouts)

Let C = (Ob,Arr, ; , id) be a category.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 13

Given arrows r ∈ Arr : L→ R and m ∈ Arr : L→ G, a pushout (G′, r′,m′) over r and
m is defined by a pushout object G′ ∈ Ob, and morphisms r′ : G→ G′, m′ : R → G′,
where

1. the “pushout square” (Figure 2.6) commutes, i. e. r ;m′ = m ; r′,

2. and the following universal property is fulfilled:
∀G′′ ∈ Ob ∀ r′′ : G→ G′′ ∀m′′ : R→ G′′

[(r ;m′′ = m ; r′′)⇒ (∃!x : G′ → G′′ [(m′ ; x = m′′) ∧ (r′ ; x = r′′)])].

The category C is said to have pushouts if the pushout (G′, r′,m′) always exists.

L R

G G′

G′′

r

m m′

r′

m′′

r′′

x

Figure 2.6: Pushout Diagram

L

g: Game

p: Platform

R

c: Character

g: Game

p: Platform

G

g: Game

p: Platform

q: Platform

G′

c: Character

g: Game

p: Platform

q: Platform

r

m m′

r′

Figure 2.7: Application of the Monotonic Rule createCharacter

14 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

An application of a monotonic rule r : L→ R requires finding a match in the host graph
G (i. e. a monomorphic arrow m : L→ G) and constructing the resulting host graph G′ by
applying the changes (i. e. constructing the monomorphic arrow m′ : R → G′) such that
the constraints above are fulfilled. m′ is called co-match. The universal property ensures
that no elements are glued unnecessarily, while the commutation in the pushout square
rejects all results G′ that do not glue enough.

Figure 2.7 illustrates the pushout construction for a rule createCharacter which creates
a new character and connects the character to a platform and the game.

Definition 6 (Graph Transformation Rules)

A (typed) graph transformation rule L
l←↩ K r

↪→ R is a pair of monomorphic arrows in
the category of (T)Graphs with common “gluing graph” K.

Monotonic rules can only handle creation, but not deletion of elements. That is why the

formalism L
l←↩ K r

↪→ R is introduced in Definition 6: l : K ↪→ L describes the deletion,
r : K ↪→ R the creation of elements. The elements in L \K are deleted by the rule, the
elements in R \K are created. All elements in K remain unchanged.

In the following chapters of this thesis, graph transformation rules which do not have
deleted or created elements (i. e. L\K = ∅ = R\K) are referred to as graph transformation
patterns.

Definition 7 (Double-Pushout Graph Transformation Rule Application)

Given a (typed) graph transformation rule p = L
l←↩ K r

↪→ R, a direct derivation with

p at a monomorphism m : L ↪→ G, denoted by G
p@m
=⇒ G′ (or G

p⇒ G′, or G⇒ G′), is
given by the double-pushout (DPO) diagram below, where (1) and (2) are pushouts
in the category (T)Graphs.

L K R

G D G′

(1) (2)

l r

m d m′

l′ r′

Figure 2.8: Double-Pushout Diagram

Definition 8 (Applicability of Graph Transformation Rules)

A (typed) graph transformation rule p = L
l←↩ K r

↪→ R is applicable to a (typed)
graph G via the match m : L ↪→ G, if the pushout complement D in the diagram
below exists, such that (1) is a pushout in the category (T)Graphs.

For the deletion part, taking the host graph as pushout object and completing square (1)
leads to the pushout complement D. After that the pushout is created in square (2) to
obtain the resulting graph G′.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 15

Figure 2.9 shows an application of the rule moveCharacter which deletes the edge
between a character and its platform and creates a new edge between the character and
another platform which must be neighboring to the previous one. The construction of
the pushout complement D leads to the deletion of the edge between the character c and
the platform p (so the rule is applicable according to Definition 8), while the pushout
construction creates the new edge between the character c and the platform q, resulting
in the graph G′.

L

c: Character

p1: Platform

p2: Platform

K

c: Character

p1: Platform

p2: Platform

R

c: Character

p1: Platform

p2: Platform

G

c: Character

g: Game

p: Platform

q: Platform

D

c: Character

g: Game

p: Platform

q: Platform

G′

c: Character

g: Game

p: Platform

q: Platform

l r

m d m′

l′ r′

Figure 2.9: Application of the Graph Transformation Rule moveCharacter

Definition 9 (Dangling Edge Condition)

Given a (typed) graph transformation rule p = L
l←↩ K r

↪→ R and a match m : L ↪→ G,
the set of dangling points (DP) is defined as:

DP = {v ∈ VL | ∃e ∈ (EG \mE(EL)) [(sG(e) = mV (v)) ∨ (tG(e) = mV (v))]}

The set of gluing points (GP) is defined as GP = lV (VK).

The Dangling Edge Condition is fulfilled by p and m iff DP ⊆ GP .

Theorem 10 (Existence and Uniqueness of Pushout Complements)

Given a (typed) graph transformation rule p = L
l←↩ K r

↪→ R and a match m : L ↪→ G,
the pushout complement {D, d : K ↪→ D, l′ : D ↪→ G} of l and m exists and is unique
up to isomorphism iff the dangling edge condition is fulfilled.

16 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

Dangling edges are edges whose source or target node is deleted during the application,
without the edge itself is defined as a deleted edge by l : K ↪→ L. Such edges must not be
left over after rule application, as they lead to an invalid graph – that is why an approach
to avoid dangling edges after rule application is necessary. Theorem 10 states that a rule is
applicable according to DPO if and only if there are no dangling edges.1 So dangling edges
cannot be left over after rule application, as their existence prevents rule application.

Besides DPO rule application according to Definition 7, another pushout approach called
single-pushout (SPO) exists.2 SPO relaxes the strict precondition for rule application such
that there may be dangling edges: If there are dangling edges, the rule is still applicable
and the dangling edges are deleted by the rule application.

2.3 Application Conditions

Application conditions can be used to define additional constraints for rule applications.
A rule with an application condition can only be applied if the rule is applicable according
to the pushout approach (DPO as defined in Definition 8 or SPO) and the application
conditions are fulfilled.

Definition 11 (Graph Condition)

Let C = (Ob,Arr, ; , id) be a category.

A graph condition over an object L is a pair gc = (p : L → P, {ci : P → Ci | i ∈ I}),
for some index set I.

L ∈ Ob is referred to as the context, p ∈ Arr the premise, and {ci ∈ Arr | i ∈ I} the
conclusions of the graph condition gc.

Definition 12 (Satisfaction of Graph Conditions)

Let C = (Ob,Arr, ; , id) be a category, and gc a graph condition over L ∈ Ob for some
index set I, i.e., gc = (p : L→ P, {ci : P → Ci | i ∈ I}).

An arrow m : L→ G satisfies gc, denoted by m |= gc, iff

∀mp : P → G [(m = p ;mp)⇒ (∃ i ∈ I ∃mci : Ci → G [mp = ci ;mci])],

where mp, (mci)i∈I are monomorphisms.

L P Ci

G

p ci

m
mp

mci

Figure 2.10: Graph Condition

1see [EEPT06, Fact 3.11, pp. 45-46] for a proof of Theorem 10
2see [EHK+97] for a formal definition of SPO

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 17

There are two possibilities to satisfy a graph condition: If there does not exist a monomor-
phic arrow mp : P → G, the condition is trivially satisfied (because the premise does not
hold). In addition, the graph condition is satisfied if there is at least one i ∈ I for which
a monomorphic arrow mci : Ci → G exists (one of the conclusion is fulfilled).

Graph conditions can be combined via logical expressions using negation (¬), conjunc-
tion (∧) and disjunction (∨) as defined in Definition 13.

Definition 13 (Complex Graph Conditions)

true is a complex graph condition.

A graph condition gc is a complex graph condition.

¬c is a complex graph condition, where c is a complex graph condition.

∧j∈J cj is a complex graph condition, where J is an index set and (cj)j∈J are complex
graph conditions.

false is an abbreviation for ¬true.

∨j∈J cj is an abbreviation for ¬(∧j∈J ¬cj).

c⇒ d is an abbreviation for ¬c ∨ d.

Definition 14 (Satisfaction of Complex Graph Conditions)

Let C = (Ob,Arr, ; , id) be a category, and c a complex graph condition over L ∈ Ob.

An arrow m ∈ Arr : L → G satisfies the complex graph condition c, denoted by
m |= c, iff one of the following holds:

• c = true

• c = gc, gc is a graph condition, and m |= gc

• c = ¬c′, and m 6|= c′ (m does not satisfy c′)

• c = ∧j∈J cj , and ∀j∈J [m |= cj].

Given a rule r : L → R, a graph condition using the left-hand side of the rule as context
forms an application condition. A rule is only applicable for a match m : L → G if the
application conditions of the rule are satisfied.

Definition 15 (Application Conditions)

Let C = (Ob,Arr, ; , id) be a category with pushouts.

Given a monotonic rule r ∈ Arr : L→ R, an application condition ac for r is a graph
condition (p : L→ P, {ci : P → Ci | i ∈ I}) over L.

A direct derivation d = G
r@m
=⇒ G′ with r at match m : L→ G satisfies ac, denoted by

d |= ac, iff m |= ac according to Definitions 12 and 14.

Definition 16 (Negative Application Conditions (NAC))

Let C = (Ob,Arr, ; , id) be a category with pushouts.

18 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

P L RCi

G G′

p r

m m′

r′

mp

ci

mci

Figure 2.11: Application Condition for Monotonic Rules

Given a monotonic rule r ∈ Arr : L→ R, a negative application condition (NAC) for
r is an application condition for r of the form (n : L→ N, {}).

N L R

G G′

n r

m m′

r′

+

Figure 2.12: Negative Application Condition for Monotonic Rules

A NAC is violated if and only if a premise N exists as there are no conclusions, i. e. the
NAC is satisfied if there is no N such that the arrow N → G can be constructed.

N

p: Platform

c′: Character

L

g: Game

p: Platform

R

c: Character

g: Game

p: Platform

G

g: Game

p: Platform

q: Platform

G′

c: Character

g: Game

p: Platform

q: Platform

r

m

n

+

m′

r′

Figure 2.13: Negative Application Condition for the Monotonic Rule createCharacter

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 19

Figure 2.13 shows an example NAC for the rule createCharacter. The NAC ensures
that there is no other character which stands already on the platform the new character is
placed on. As the arrow N → G cannot be constructed, the rule is still applicable. Note
that a second rule application with the same match m is not possible after the shown
application to G because the arrow N → G′ (G′ from the first rule application is the new
G for the next rule application) can be constructed for the match choosing the platform
p. A new character could still be added if m chooses platform q, i. e. a the new character
stands on q.

The definition of application conditions for monotonic rules r : L → R can be easily
extended to graph transformation rules p = L ←↩ K ↪→ R as only rule applicability is
affected by the definition. Figures 2.14 and 2.15 show the modified diagrams.

P L K RCi

G D G′

p l r

m d m′

l′ r′

mp

ci

mci

Figure 2.14: Application Condition for Graph Transformation Rules

N L K R

G D G′

n l r

m d m′

l′ r′

+

Figure 2.15: Negative Application Condition for Graph Transformation Rules

20 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

3 Requirements

We are interested in a graph transformation tool for endogenous model transformations
of attributed typed graphs. The tool shall be usable for teaching and can be seamlessly
integrated into a general purpose language (Java). In the following, we list the features
we regard as desirable for the intended use cases in an order ranging from essential to less
significant aspects. For each requirement we shall give a label, a short explanation and
argue why the feature is useful.

Incrementality
Matching a pattern in a host graph basically requires solving the subgraph isomor-
phism problem which is known to be NP-complete in general. Incremental pattern
matchers store the set of matches of a rule and incrementally maintain it as the
model changes (cp. [VVS06], [BHRV08]).

With support for incrementality some features can be implemented more easily, e. g.
notifications if a certain pattern is found for the first time or if a certain pattern
cannot be matched anymore (cp. Section 6.4 for a description of tasks which are best
solved with incremental pattern matching). Without incremental pattern matching
one would need to check for new matches for the observed patterns after every change
to be able to report new matches as soon as they appear.

Interpreter
The graph transformations are realized with an interpreter,1 so no code generation
is necessary to perform pattern matching and model manipulation.2 The main ad-
vantage of an interpreter is that patterns can be found for all possible bindings. For
code generation all bindings (free or bound) have to be fixed at specification time.
The graph transformation engine should support setting parameters to fixed values
before application.

For developers of graph transformation rules interpreters have the advantage that
the rule can be directly tested without generating code. As code generation may
take a long time if the rule set is large and everything needs to be regenerated, this
can help to speed up the specification process.

In addition, the interpreter-based execution appears to be best suited for support of
incrementality as we do not know any pattern matcher that is not an interpreter.

1Compared to generated code, an interpreter will have reduced performance in general, but as the tool
is mainly intended for teaching, we consider performance to be of secondary importance.

2Generated code for the EMF meta-models as well as for the typed interface provided for Java integration
can of course be used. In fact, eMoflon::IBeX-GT requires generated code for the meta-models and for
the generated API.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 21

Integration with a TGG tool
The graph transformation tool shall be integrated with a TGG tool such that the
implementation can use shared libraries. From a developer’s perspective the inte-
gration reduces the effort for maintaining both a GT and TGG tool.

The same meta-models can be used for GT and TGG specifications. This makes it
possible to combine GT and TGG (e. g. GT for preprocessing of a model transformed
via TGG). A similar syntax for rule specification simplifies learning the domain-
specific language for rule specification and allows even to reuse parts of an existing
specification.

Mature integration with a general purpose language
A seamless integration with Java 8 via an API allows to invoke model queries and
transformations from standard Java source code. Thereby a developer can imple-
ment a method by just calling a graph transformation rule instead of writing code
for pattern matching and performing changes in the model. This way queries for
complicated graph structures and operations on them do not need to be programmed
in Java, but can be specified in the GT editor and invoked by a program.

As the specification of patterns and rules does not require advanced programming
skills this part can be understood much easier by people without programming ex-
perience. Ideally even domain experts instead of programmers could specify the
rules.

The editor specification focuses on graph structures and does not include control
flow. Instead the control flow structures of Java will be used in a program using the
API. In this way the benefits of the textual pattern specification for complex graph
patterns are combined with the full power of Java control flow structures.

Dedicated support for model queries
In addition to model transformations (i. e. applying transformation rules on matches
in a given host graph), we are interested in querying models, i. e. just finding matches
for the left-hand side of a rule. In the API this feature can be used to check con-
straints specified as patterns on the host graph or check rule applicability without
actually applying any changes.

DPO or SPO semantics
The implementation shall be based on the algebraic approach to graph transfor-
mations and therefore be well-grounded on category theory, e. g. supporting the
double-pushout (DPO) and single-pushout (SPO) semantics. With support for both
approaches, one can flexibly switch between them, choosing the most suitable one
for a specific use case.

Modularity on rule level
Pattern refinement3 as a modularity concept allows to inherit and overwrite graph
structures from super patterns. This way common parts can be shared between
different patterns, such that they do not have to be copied into similar or more
specific patterns.

3see Section 5.2.4 for a definition of pattern refinement

22 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

Application conditions
Graph conditions, especially Negative Application Conditions (NACs), can be speci-
fied to restrict rule applicability.4 Simple application conditions shall be combinable
via logical expressions.

Attribute manipulation
The editor shall support the specification of attribute constraints. New attribute
constraints can be implemented in Java and integrated into the specification.

Textual concrete syntax and visualization
Graph transformation rules shall be specified textually in a DSL via an editor with
syntax-highlighting. The textual syntax allows easy versioning with any version
control software. A visualization is generated from the textual syntax to help users
to understand large specifications, especially when using pattern refinement.

Modeling standard
The tool shall support a modeling standard (such as EMF) to provide interoperability
of models with other tools.

End-user documentation
Detailed documentation for end-users shall be available such that people who are not
familiar with the development of the tool can easily install and use it. For teaching
purposes this is necessary because students should be able to quickly and easily learn
to work with the tool.

4see Section 2.3 for a formal definition of application conditions

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 23

4 Related Work

This chapter presents existing graph transformation tools. Section 4.1 analyzes them with
respect to our requirements from Chapter 3, while Section 4.2 summarizes the comparison
results.

4.1 Graph Transformation Tools

There are already some tools available supporting the modification of attributed typed
graphs via graph transformation. Many of them are used for academic purposes, while
others are also applied in industry.

AGG (“The Attributed Graph Grammar System”) [Run17], developed by Olga Runge
(TU Berlin), interprets graph transformation rules with NACs and control structures
based on the SPO semantics. While the latest version was released in 2017, the manual
[Run06] is outdated (already ten years old). AGG offers an API for integration with Java
programs, for which detailed documentation could not be found. The examples available
on the website indicate that the API is not typed, thus requires casting.

AToMPM (“A Tool for Multi-formalism and Meta-Modelling”) [SVM+16] is an inter-
preter and code generator for model queries and unidirectional transformations (both
endogenous and exogenous) with a web-based user interface. The development of the tool
is a joint project of universities in Montreal, Antwerp and Alabama. An integration into
a general purpose language is not directly supported. AGG and AtoMPM do not support
modularity for rules and parameterized rules.

eMoflon [AKK+17b] is a GT and TGG tool developed at TU Darmstadt and Paderborn
University. Only eMoflon::SDM (the GT part) is checked for compliance with our require-
ments. The EMF-based Eclipse plugin relies on code generation. An end-user handbook
[AKK+17a] is available, introducing eMoflon based on examples.

EMorF [Sol12], developed by Solunar GmbH, is an EMF-based Eclipse plugin with
support for model queries and model transformations (model modification as well as bidi-
rectional transformations with TGGs). It offers an API for integration into Java programs,
but no detailed API documentation is available. The parameters of the API are not typed;
the same holds for objects in matches so that casts are required. The rule specification is
just introduced based on one example. The last release 0.4.2 was published in 2012, since
then, the development has been discontinued.

GRAPE (“Graph Rewriting And Persistence Engine”) [Web17], a GT interpreter by
Jens Weber, can be integrated into Clojure programs. The GRAPE interpreter uses SPO
semantics by default, but rules may specifiy that they are applied according to DPO
semantics. Rules can be parameterized, but cannot refine other rules. Documentation of
the textual syntax [Web16] with many examples is available online.

GrGen.NET (“Graph Rewrite Generator”) [JBG17a] offers declarative rule specification
for transformations, applied by a code generator. Rules may share subpatterns, but cannot

24 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

refine other rules. Their application follows SPO semantics. A type-safe API enables
integration into C# code. Detailed documentation [JBG17b] is available.

GROOVE (“GRaphs for Object-Oriented Verification”) [RdMZ17] provides graph trans-
formations based on SPO rules. Graphs can be queried with Prolog, but graphs cannot
be transformed via a general purpose language. Groove also lacks a modularity concept
in the rule specification language.

Henshin EMF [BHK+16a] is an Eclipse-based graph transformaton tool providing an
interpreter API for the usage in Java code. When using the API, rules must be loaded into
a so-called unit which can be applied to the model.1 The interaction with the API classes
relies on rule and node names. The interface is not typed such that casting from Object

to the concrete type is necessary. The interpreter supports both SPO and DPO which
can be arbitrarily mixed. The tool is documented in a wiki [BHK+16b] accompanied by
examples.

VIATRA [HVRU17], part of the Eclipse Modeling Project, is based on an incremental
query backend and focuses on pattern matching and not on graph transformation. A Java
API is available for integration into Java applications. A typed interface is generated
for the API.2 Even if the focus is not on algebraic graph transformation, VIATRA offers
major support for many of our requirements, but lacks support for rule applications and
integration with a TGG tool. From the tools presented in this chapter, it is the only one
that supports incrementality. VIATRA offers composable and reusable patterns, but there
is no modularity concept on rule level. No visualization is provided in the textual editor.
The website offers tutorials and documentation.

4.2 Comparison of Existing Graph Transformation Tools

The comparison of the tools introduced in the previous section is summarized in Fig-
ure 4.1.3 This chapter focuses on tools with at least one release since 2015 or special
support for one of the requirements. It is partly based on the comparison of model trans-
formation tools published by Kahani and Cordy [KC15a, KC15b]. Please note that the
comparison takes solely our requirements into consideration and ignores other aspects
completely. The tools have been analyzed in the version stated in Figure 4.1 according to
their official documentation.

The symbol X means that the requirement is fully fulfilled and 7 states that the require-
ment is not fulfilled. The notation (X) indicates that the requirement is only partially
fulfilled, as stated in the previous section or in the footnotes.

VIATRA is the only tool with support for incrementality, while only eMoflon and eMorF
combine GT and TGG within one tool. Most tools support integration into a general
purpose language, but not all APIs are typed and well documented (see previous section).

No tool supports modularity in the sense of pattern refinement, only GrGen.NET and
VIATRA allow to share the specification of graph structures between patterns. Only
GrGen.NET and Henshin EMF support application conditions which are more complex
than NACs. Except AtoMPM, all tools support one of the common modeling standards

1https://wiki.eclipse.org/Henshin/Interpreter
2https://www.eclipse.org/viatra/documentation/query-api.html
3Horizontal and vertical lines in the table are just for easier reading, the aspects are ordered as in the

previous section.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 25

https://wiki.eclipse.org/Henshin/Interpreter
https://www.eclipse.org/viatra/documentation/query-api.html

EMF (Eclipse Modeling Framework), GXL (Graph eXchange Language), or Neo4J (a
graph database management system).

Tool, Version →

Feature ↓

A
G

G

A
to

M
P

M

eM
ofl

on
::
S
D

M

E
M

or
F

G
R

A
P

E

G
rG

en
.N

E
T

G
R

O
O

V
E

H
en

sh
in

E
M

F

V
IA

T
R

A

2.1 0.6.1 2.32.0 0.4.2 0.1.1 4.5.2 5.7.2 1.4.0 1.6.1

Incrementality 7 7 7 7 7 7 7 7 X

Interpreter X X 7 X X 7 X X X

Integration with a TGG
tool

7 7 X X 7 7 7 7 7

Mature integration with
a general purpose lan-
guage4

X 7 7 X X X (X) X X

Dedicated support for
model queries

7 X 7 X 7 7 7 7 X

DPO or SPO semantics SPO ?5 SPO SPO both SPO both both –

Modularity on rule level 7 7 7 7 7 (X) 7 7 (X)

Application conditions6 NACs NACs NACs OCL7 NACs X NACs X NACs

Attribute manipulation8 (X) (X) X (X) (X) X (X) (X) (X)

Textual concrete syntax
and visualization9

7 7 7 7 X X 7 7 7

Modeling standard GXL 7 EMF EMF Neo4J EMF GXL EMF EMF

End-user documentation (X) X X 7 X X X X X

Table 4.1: Comparison of Graph Transformation Tools

4Xindicates that an API for integration into Java, C#, or Clojure is available. GROOVE allows model
queries via Prolog.

5The documentation does not describe the pushout semantics.
6For application conditions, a Xindicates support for more complex application conditions than NACs.
7EMorF one can use constraints defined in the Object Constraint Language (OCL) to restrict the appli-

cability of a rule.
8Most tools only support a limited set of attribute conditions, indicated by (X). A Xindicates that the

user can define custom attribute relations.
9AGG, AtoMPM, EMorF, eMoflon::SDM, GROOVE, and Henshin EMF come with a graphical editor,

while GRAPE and GrGen.NET provide a textual editor and a generated visualization. VIATRA makes
use of a textual syntax, but does not provide any visualization.

26 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

5 Patterns in eMoflon::IBeX-GT

This chapter provides a short introduction to the architecture of the eMoflon::IBeX tool
suite (Section 5.1) and describes the implementation of the graph transformation part in
detail. Section 5.2 explains the language features supported by the textual editor and the
transformation into patterns for the pattern matcher. The generated pattern networks are
summarized in Section 5.3.

5.1 eMoflon::IBeX Architecture

The eMoflon::IBeX tool suite is implemented as a set of plugins for the Eclipse IDE and
supports both unidirectional and bidirectional model transformations. Some functions
such as code generation for meta-models and utilities for handling the interaction with the
Eclipse framework are shared with eMoflon::SDM/TiE via eMoflon::Core.

Figure 5.1 gives an overview of the high-level architecture of eMoflon::IBeX. The tool can
be divided into the editor (green), its core functionality (blue) and the Democles adapter
(orange). The GT and TGG rules are defined in textual editors based on the Xtext1

framework which provide features such as syntax highlighting, auto-completion, and val-
idation. Graphical visualizations are implemented with PlantUML.2 Utilities needed for
both the GT and TGG editor have been moved to a shared project (“Editor Utils”) or
eMoflon::Core.

GT Editor GT GT Democles

Editor Utils Common

TGG Editor TGG TGG Democles

uses

uses

uses

uses

uses

uses

uses

uses

uses

uses

uses

Figure 5.1: Component Diagram for eMoflon::IBeX (see Appendix A for details)

The Common project defines the meta-model for IBeX pattern model, a pattern network
which is independent from a concrete pattern matcher. Currently IBeX patterns are used
for GT only, but shall be shared with the TGG part later. In addition, some utilities for
dealing with EMF models are provided.

1https://www.eclipse.org/Xtext/
2http://plantuml.com/

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 27

https://www.eclipse.org/Xtext/
http://plantuml.com/

The GT and TGG projects provide Eclipse integration and runtime code which is inde-
pendent from a concrete pattern matcher. To use eMoflon::IBeX, an adapter for a concrete
incremental pattern matching engine is necessary. Currently only Democles [VAS12] is
fully supported, although prototypes for Viatra and Drools exist.

5.2 Transformation of Graph Transformation Rules into IBeX
Patterns

This section explains the transformation from the textual specification in the editor into
IBeX patterns which can be understood by a pattern matching engine after another trans-
formation into the pattern format of the engine. In the following, patterns and rules will
be given by their textual syntax and graphical visualization. The interested reader is
referred to the handbook [AR18] for more details about the textual syntax.

Figure 5.2 illustrates the use of model transformations in the eMoflon::IBeX implemen-
tation. The user specifies patterns and rules in text files with the file extension gt using
an Xtext-based editor. Xtext automatically parses the file and transforms the textual
specification into an editor model when a gt file is loaded.

The visualizations of the editor model, the IBeX patterns, and the Democles patterns
are realized via transformations to PlantUML code, which is interpreted and displayed by
the PlantUML Eclipse plugin.

gt text file

Editor Model
Editor Model
Visualization

Xtext-based
Meta-Model

GT API
Model

GT API
Meta-Model

Java API

IBeX
Patterns

IBeX Pattern
Meta-Model

IBeX Pattern
Visualization

Democles
Patterns

Democles
Meta-Model

Democles
Visualization

Xtext transformation

visualized in conforms to

transformation transformation

conforms to

visualized in

conforms to

code generationtransformation

conforms to visualized in

Figure 5.2: Model transformations for eMoflon::IBeX-GT

28 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

Whenever a project with gt files is built, the editor models of all gt files in a package are
transformed into the GT API model and the IBeX pattern model. In addition, code for a
typed Java API is generated as described in Section 6.1.

For each pattern and each rule a context pattern containing all context elements, deleted
elements, and attribute conditions is generated. In addition, for each rule a create and
a delete pattern is generated to define which elements must be created or deleted when
the rule is applied. The create pattern contains all created nodes and references, together
with any attribute assignments, while a delete pattern contains just deleted nodes and
references. Figure 5.3 summarizes which parts of the editor model are included in which
kind of the generated IBeX patterns.

context nodes
and references

attribute
conditions

deleted nodes
and references

created nodes
and references

attribute as-
signments

IBeXContextPattern
or IBeXContextAlternatives

IBeXDeletePattern

IBeXCreatePattern

Figure 5.3: Editor model to IBeX patterns

The transformation from IBeX context patterns to the pattern representation used by a
concrete incremental pattern matching engine (e. g. Democles) happens at runtime. If
one wants to use eMoflon::IBeX with another pattern matcher, just the orange part in
Figure 5.2 (the Democles adapter) needs to be implemented for the other engine, as just
this part depends on the meta-model for Democles patterns.

5.2.1 Nodes and References

A pattern/rule consists of nodes and references between them. Each node and reference
must have a type from an Ecore meta-model. The type of a node can be abstract – except
if the node is created and the rule is not abstract (cp. Section 5.2.4). This ensures that all
created nodes in applicable rules have a concrete type such that the node can be actually
created, which would not be possible for an abstract type.

For each node and reference an operator defines whether it is context (shown with
black background in the visualization), created (green) or deleted (red). Note that some
combinations of node and reference operator do not make sense and are forbidden, e. g.
there must not be a context reference in a created node as there cannot be a reference in
a node which does not exist yet.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 29

The pattern findCharacterOnExit (Figure 5.4) will match any characters standing on
an exit platform. The rule createCharacter (Figure 5.5) which creates a new character
and references from the character to an existing game and to an existing platform. The
rule moveCharacterToNeighboringPlatform (Figure 5.6) deletes the standsOn reference
between a character to its current platform and creates a new standsOn reference to
another platform which must be a neighbor of the previous one.

(a) Textual Syntax (b) Visualization

Figure 5.4: Pattern findCharacterOnExit

(a) Textual Syntax (b) Visualization

Figure 5.5: Rule createCharacter

In eMoflon::IBeX matches must be injective, i. e. nodes with different names must be
matched to different objects in a match. For example, the two platforms in the rule
moveCharacterToNeighboringPlatform must be different platforms. So a platform which
has a neighbors edge to itself would not be a valid match. The decision for injectivity

30 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

(a) Textual Syntax

(b) Visualization

Figure 5.6: Rule moveCharacterToNeighboringPlatform

per default has been made as this is what the user intuitively expects when looking at the
visualization. If one does not want to have injectivity for a pattern, one has to specify
different variants of the pattern.

A match for a pattern contains all nodes of that pattern – except so-called local nodes.
Per convention in eMoflon::IBeX-GT, a node is local if and only if its name starts with an
underscore. If one was not interested in the platforms of Figure 5.6, one could name them
platform1 and platform2 to omit them from in the matches for the pattern. So local

nodes can be used to get smaller matches, as less elements are contained in the match.
As the binding of local nodes is not relevant for the match, specifying nodes as local can
reduce the number of matches because different bindings for the local nodes do not result
in different matches.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 31

5.2.2 Attribute Assignments and Conditions

Attribute assignments define new attribute values to be set when the rule is applied, while
attribute conditions are a match filter based on a comparison of attribute values according
to the defined relation (==, !=, <=, <, >, or >=). eMoflon::IBeX-GT supports constants,
the attributes of other nodes, and parameters as attribute values as long as the type of
the value fits to the one of the attribute. For example, a String attribute can only have a
String value.

(a) Textual Syntax (b) Visualization

Figure 5.7: Pattern findCharacterOfColor(color: COLOR)

(a) Textual Syntax (b) Visualization

Figure 5.8: Rule createBlueCharacter

32 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

The pattern findColoredCharacter (Figure 5.7) searches for a character which stands on
a platform and has a certain color. The attribute condition defines that only characters
whose color attribute equals the value of the parameter color of the type COLOR (an enum
defined in the meta-model) can be matched. The rule createBlueCharacter (Figure 5.8)
creates a new character whose color attribute is set to BLUE, given by an enum literal.
Attributes which are not specified for created nodes are set to the default value defined in
the Ecore meta-model.

Parameters for primitive data types and enums must be declared in the signature of a
pattern or a rule. At run time they are replaced with a concrete value of the correct type.3

As parameter values are only bound at run time, parameterized attribute conditions cannot
be transformed to Democles, but are handled by the graph transformation interpreter.

Note that there are some logical restrictions when using attribute assignments and
conditions: Attribute assignments must not be placed in deleted nodes (if the node was
deleted, its attributes cannot be changed anymore) and conditions cannot occur within
created nodes (the node does not exist yet and does not have any attribute values).

5.2.3 Applications Conditions

Application conditions are additional constraints on graph structures to check when finding
matches for a certain pattern: The application conditions must be fulfilled for the match
according to Definitions 12 and 14, otherwise the match is not valid. eMoflon::IBeX-GT
allows to specify positive and negative application conditions and combine them via logical
expressions && (logical conjunction) and || (logical disjunction).

By convention, nodes of the same name in a pattern and the patterns used in its ap-
plication conditions must be matched to the same node. The arrows in the visualization
illustrate which nodes of the different patterns must be equal. Only the nodes of the main
pattern are included in matches, any bindings of the nodes in the patterns of conditions
will not be available in matches.

5.2.3.1 Negative Application Conditions

Via forbid a negative application condition (NAC) can be defined. A NAC invalidates
matches with a certain pattern structure. For example, the pattern findEmptyExit (Fig-
ure 5.9) contains a NAC to ensure that no character stands on the exit platform of the
main pattern. Otherwise any exit platform could be mapped for the exit node regardless
of whether characters stand on it or not.

(a) Textual Syntax

Figure 5.9: Pattern findEmptyExit

3Section 6.3.5 explains how parameters can be passed via the API.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 33

(b) Visualization

Figure 5.9: Pattern findEmptyExit (cont.)

(a) Textual Syntax

Figure 5.10: Pattern findStandalonePlatform

34 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

(b) Visualization

Figure 5.10: Pattern findStandalonePlatform (cont.)

Multiple application conditions can be combined via && as illustrated in the pattern
findStandalonePlatform (Figure 5.10). The two NACs restrict the matches for the
simple platforms such that all platforms which are connected to another platform via a
bridge or a wall are excluded as well as any platforms with a neighboring platform. Plat-
forms matched by the pattern findStandalonePlatform cannot be left by a character
standing on it. When a She Remembered Caterpillars world is created, such a standalone
platform with a character standing on it should be avoided, otherwise the game cannot
be finished.

5.2.3.2 Positive Application Conditions

The pattern findPlatformWithExactlyOneNeighbor (Figure 5.11) uses a positive appli-
cation condition (PAC) via enforce in combination with a NAC. The PAC ensures that
the platform must have at least one neighboring platform and the NAC excludes any plat-
forms which have at least two neighbors. Finally, only the platforms with exactly one
neighbor remain as matches.

In this example, the PAC could be simply integrated into the main pattern without
changing its meaning. However, in general PACs are necessary to express certain con-
straints: For example, multiple PACs combined via disjunction cannot be expressed with
the integration into the main pattern (cp. example in Section 5.2.3.3). In addition, the
nodes used in application conditions are not contained in the matches.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 35

(a) Textual Syntax

(b) Visualization

Figure 5.11: Pattern findPlatformWithExactlyOneNeighbor

36 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

5.2.3.3 Disjunctions

Application conditions can be used to express alternatives as well: For example, the
pattern findPlatformWithTwoWays (Figure 5.12) searches for platforms which have at
least two ways to enter or leave the platform (either via neighboring platforms or via
bridges/walls). To express this, three application conditions need to be combined via ||

to deal with the possibilities that the platform (1) has two neighboring platforms, (2) has
two connections to bridges or walls, or (3) one neighboring platform and one connection
to a bridge or a wall.

(a) Textual Syntax

Figure 5.12: Pattern findPlatformWithTwoWays

In the IBeX pattern model, patterns with multiple disjunctions are represented as a set
of alternative patterns. A match for the pattern is defined as a match for any of the
alternative patterns. For each alternative pattern a separate pattern is generated which

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 37

(b) Visualization

Figure 5.12: Pattern findPlatformWithTwoWays (cont.)

38 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

is given to the pattern matching engine because Democles cannot deal with alternatives
directly (although this feature is planned for the future). As usual, Democles reports the
matches for all patterns to the graph transformation interpreter, which has to collect and
combine the matches of all alternative patterns, excluding duplicate matches. The removal
of duplicates is necessary as Democles may report the same match for multiple alternative
patterns.

The three alternatives for the pattern findPlatformWithTwoWays are disjoint. So no
matches will be removed when combining the matches of the three alternatives because
no duplicates can be found. Without the NACs in the third alternative, a match for
a platform with two neighbors and a bridge connection (as the platform p1 shown in
Figure 5.13) would be reported by the first and the third alternative. The duplicate check
would remove one of the matches, so the interpreter would still return the same set of
matches. Without the removal of matches, a match reported by two alternatives would
be returned twice.

p1: SimplePlatform

p2: SimplePlatformb: Bridge p3: SimplePlatform

Figure 5.13: Example Model with Matches Reported for Two Alternatives

Note that logical expressions combining application conditions must be given in disjunctive
normal form (DNF), i. e. the clauses combined via || must only contain PACs and NACs
combined via &&. This is necessary to easily create the alternative patterns which can
be given to the pattern matcher, as for each clause an alternative pattern is generated,
containing the main pattern with the PACs and NACs from the clause.

5.2.4 Pattern Refinement

Pattern refinement is a modularity concept on the level of patterns which allows to share
common subparts of the pattern with one or multiple super patterns. Similar to inheri-
tance in object-oriented programming, this avoids declaring the same graph structures in
multiple patterns. So pattern refinement helps to reduce copy and paste and leads to a
specification which can be maintained more easily.

Patterns with super patterns are flattened, i. e. transformed into an equivalent version
without pattern refinement. After that the flattened pattern is transformed into IBeX
patterns as shown in Figure 5.3. The semantics of pattern refinement (how a pattern
with super patterns can be flattened) is given by Definition 17.4 Note that application
conditions are not inherited to avoid additional complexity in situations in which the
application conditions of super patterns come into conflict with each other. Due to this
decision the user cannot lose track of the application conditions of a concrete pattern.

Patterns can be abstract: Abstract means that the pattern cannot be applied directly,
but only exists to be used as a super pattern.

4The definition of rule refinement for Triple Graph Grammars by Stolte [Sto17] is generalized for graph
transformations.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 39

Definition 17 (Refined Pattern)

A pattern with one or more super patterns is called a refined pattern. The semantics
of such a pattern is defined by the following constraints:

1. A pattern contains all nodes from its super patterns.

2. Equivalent nodes (identified by their name) are merged into one node.

3. Equivalent references (identified by their type, source and target node) are
merged into one edge.

4. Equivalent attribute assignments (identified by their node, attribute type and
value) are merged into one attribute assignment. There must not be different
attribute assignments for the same attribute inherited from different patterns.

5. Equivalent attribute conditions (identified by their node, attribute type, relation
and value) are merged into one attribute condition.

6. Equivalent parameters (identified by their name) are merged into one parameter.
There must not be different type definitions for parameters of the same name.

7. When overriding a node/reference, created/deleted elements can be overwritten
by context elements. Context elements must not be overwritten by created or
deleted elements. Created elements must not be overwritten by deleted elements,
deleted elements must not be overwritten by created elements.

8. The type of a node is the lowest of the types of all declarations of a node within
a pattern and its super patterns. The type of a node can only be the same type
or a lower type as declared for a node of the same name in a super pattern.

Table 5.1 shows some combinations of allowed and forbidden node type declarations in
refined patterns and their super patterns according to the last constraint. Specifications
without a lowest type and type not conforming to the type in the super pattern lead to
an error message in the editor.

Node types in super patterns Node type in pattern Final type

Platform (none) Platform

Platform, SimplePlatform (none) SimplePlatform

ExitPlatform, SimplePlatform (none) ERROR (no lowest type)

ExitPlatform Platform ERROR (no subtype)

Platform SimplePlatform SimplePlatform

ExitPlatform SimplePlatform ERROR (no subtype)

Table 5.1: Allowed and Forbidden Node Type Changes in Refined Patterns

40 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

(a) Textual Syntax

Figure 5.14: Rules with Refinements

Figure 5.14 shows some rules having a lot of elements in common. Using the pattern
refinement hierarchy shown in Figure 5.14b, duplications in the textual specification can
be avoided or at least significantly reduced as only nodes with additional references or
another type need to be redeclared in the refined pattern. Nodes which are already defined
in a super pattern are highlighted in bold. The visualization shows the refined rules after
the flattening according to Definition 17.

The rule moveCharacterToNeighboringPlatform just specifies the neighbors edge

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 41

(b) Refinement Hierarchy

(c) Abstract Rule moveCharacter (d) Rule moveCharacterToNeighboringPlatform

Figure 5.14: Rules with Refinements (cont.)

between the two platforms, all objects and the other edges are inherited from the su-
per rule moveCharacter. The abstract rule moveCharacterAcrossPlatformConnector

overrides the type of the platform nodes to a subtype, SimplePlatform. The rules
moveCharacterAcrossBridge and moveCharacterOverWall define that the two platforms
must be connected via a bridge or a wall, respectively.

The algorithm for the flattening of an editor pattern collects all nodes of the pattern
and its super patterns and combines them into one large pattern (so-called co-product).
After that parts which are equivalent according to Definition 17 are merged as described
in the following:

1. When merging two nodes, the operator is given by Table 5.2 (see constraint 7 in the
definition) and the type of the node is the lower type of the two merged nodes. In
the case that two nodes of the same name have different types and none of the types
is a subtype of the other, the specification is invalid.

42 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

(e) Abstract Rule moveCharacterAcrossPlatformConnector

(f) Rule moveCharacterAcrossBridge

(g) Rule moveCharacterOverWall

Figure 5.14: Rules with Refinements (cont.)

2. When merging two equivalent references, attribute assignments, or attribute condi-
tions only one of them remains and the other one is removed.

a) The operator of merged references is given by Table 5.2.

b) If there are multiple attribute assignments for the same attribute within a node,
their values must be equal. Otherwise the specification is invalid, as one cannot
decide which attribute value shall be assigned.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 43

3. When merging parameters, the parameters of the super patterns are appended to the
parameter list of the refined pattern. If parameters of the same name have different
types, the specification is invalid.

++ -- context

++ ++ ERROR context

-- ERROR -- context

context context context context

Table 5.2: Operators of Merged Nodes and References in Refined Patterns

For the flattening algorithm it is irrelevant whether a node is specified in the refined
pattern or one of its super patterns. Only for parameters the order is relevant (because
the parameters of the pattern specification become parameters for the constructor of the
pattern). By repeating all parameters in the refined pattern, the user can influence the
order of all parameters.

The user gets feedback on invalid specifications by error markers shown in the editor.
When a project with invalid specifications is built, the problems are written on the console.

5.3 Pattern Networks

The previous sections introduced the features of the pattern language in the textual editor:
nodes and references, attributes, application conditions, and pattern refinement. This
section gives a summary how they are represented in the editor model, the IBeX pattern
model, and in Democles. In addition, details on the transformations are provided.

The parser of the Xtext framework parses gt files into an editor model file containing
EditorPatterns and EditorConditions. Figure 5.15 shows a simplified class diagram
of the editor model. EditorPatterns have a type, either PATTERN or RULE. By using
the same object for patterns and rules, both can easily be used together in a refinement
hierarchy. They consist of a set of EditorNodes, which can have EditorAttributes and
EditorReferences. An EditorAttribute has a relation (assignment or a comparison
such as equals) and an attribute value. An EditorReference has a target node.

Both EditorNodes and EditorReferences have an operator, either CONTEXT (default
value), CREATE (keyword ++ in the editor), or DELETE (--).

EditorPatterns have a set of EditorConditions (disjunction). EditorConditions
represent a conjunction of conditions (a clause in the DNF), which can be a reference
to another EditorCondition or a positive or negative EditorApplicationCondition

(enforce or forbid). EditorConditionReference reference another condition.

44 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

superPatterns

0..*

conditions (OR)0..* nodes0..*

attributes0..* references0..*

target

1

conditions (AND)1..*

condition

1

pattern

1
EditorPattern

EditorCondition

EditorSimpleCondition

EditorConditionReference

EditorApplicationCondition

EditorNode

EditorAttribute EditorReference

Figure 5.15: Simplified Meta-Model of the Editor Model

5.3.1 IBeX Pattern Networks

During the build of a graph transformation project in Eclipse with eMoflon::IBeX, the
editor specification is transformed into the IBeX pattern model, which is saved in an
ibex-patterns.xmi. Just this file is used by the graph transformation interpreter and
must be read at runtime.

A simplified class diagram for the IBeX pattern model (just context patterns) is shown
in Figure 5.16. An IBeXContextPattern consists of signature nodes, local nodes and
edges, injectivity constraints, attribute constraints, and pattern invocations.

Table 5.3 summarizes how patterns and rules of the editor model are transformed
into the IBeX pattern model. EditorPatterns with no or just one clause in the DNF
are transformed into an IBeXContextPattern. If there are more than two disjunctions,
the EditorPattern is transformed into an IBeXContextAlternatives, containing one
IBeXContextPattern per clause in the DNF.

Each EditorNode is transformed to an IBeXNode. If the name of the name starts with an
underscore, the node is local (i. e. not part of a match), otherwise the node is a signature
node. For each pair of two nodes for which the type declaration does not ensure that the
nodes are mapped to different objects, an injectivity constraint is added. Such a constraint
defines a pair of nodes, which must not be equal.

Pattern refinement is not included in the table as the refinement is “flattened” and the
flattened pattern is transformed afterwards.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 45

alternatives

2..*

attributeConstraints0..*

injectivityConstraints

0..*

signatureNodes

1..*localNodes

0..*

localEdges

0..*

invocations0..*

values2

outgoingEdges

0..*

sourceNode

1

incomingEdges

0..*

targetNode

1

invokedPattern

1

IBeXContext IBeXContextAlternatives

IBeXContextPattern

IBeXPatternInvocation IBeXAttributeConstraint

IBeXNodePair

IBeXNode

IBeXEdge

Figure 5.16: Simplified Meta-Model of the IBeX Pattern Model

Editor model IBeX model

EditorNode (if the operator is
CONTEXT or DELETE)

IBeXNode (as local node if the name starts with
, otherwise as a signature node) and injectivity

constraints

EditorReference (if the opera-
tor is CONTEXT or DELETE)

Positive IBeXPatternInvocation of an edge pat-
tern with two signature nodes and one IBeXEdge

EditorAttribute (if the relation
is not an assignment)

IBeXAttributeConstraint (value given by a con-
stant, a node and an attribute type or a parameter
name)

EditorApplicationCondition IBeXPatternInvocation (positive invocation for
PACs, negative invocation for NACs)

Table 5.3: Transformation from the Editor Model into IBeX Patterns

46 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

References and application conditions are transformed into so-called pattern invocations.
A pattern invocation is the equivalent to a method call in general programming languages.
It defines that the graph structure of invoked pattern must be matched with the mapping
of nodes from the original pattern to the signature nodes of the invoked pattern. The
patterns connected via pattern invocations form a pattern network.

The context pattern generated for the rule moveCharacterToNeighboringPlatform

(introduced in the previous section, Figure 5.14c) is shown Figure 5.17. The main pattern
contains only the three nodes. The left pattern invocation ensures that there must be
a standsOn edge between the objects mapped to the signature nodes character and
platform1 in the main pattern. platform1 and platform2 must be connected via a
neighbors edge to fulfill the right pattern invocation.

Extracting the edges into edge patterns invoked by the main patterns leads to smaller
patterns. Of course, edge patterns can be invoked by multiple patterns (or even multiple
times by the same pattern, using different node mappings). For example, the edge pattern
edge-Character-standsOn-Platform is invoked by all patterns which require a standsOn

edge between a character and a platform.

Figure 5.17: IBeX Context Pattern moveCharacterToNeighboringPlatform

5.3.2 Democles Pattern Networks

The meta-model of the pattern network used by Democles is shown in Figure 5.18 (sim-
plified). A Democles Pattern consists of symbolic parameters and a PatternBody, which
contains local variables and constraints.

All elements from the IBeX representation to their equivalent in the Democles model,
as shown in Table 5.4. As Democles cannot handle parameterized attribute conditions
and alternatives of multiple patterns, these two scenarios are handled by the interpreter
via filtering and combining (see Section 6.3 for detailed information).

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 47

bodies1..*

symbolicParameters

1..*

localVariables

0..*

constraints0..*
parameters

0..*

reference 0..*

invokedPattern

0..*
Pattern

PatternBody

Constraint

PatternInvocationConstraint Reference RelationalConstraint

UnequalEqual ...

EMFVariable

ConstraintParameter

Figure 5.18: Simplified Meta-Model for Democles Patterns

IBeX model Democles model

IBeXNode as local node EMFVariable as local node

IBeXNode as a signature node EMFVariable as symbolic parameter

IBeXAttributeConstraint (if the value is a
constant or an attribute of another node)

Subtype of RelationalConstraint

(for the correct relation) based on
EMFVariables and constants

Injectivity constraint (IBeXNodePair) Unequal constraint

IBeXEdge Reference constraint

IBeXPatternInvocation PatternInvocationConstraint

Table 5.4: Transformation from IBeX Patterns into Democles Patterns

48 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

6 Graph Transformation Java API

This chapter describes how a typed Java API can be extracted from the textual specifi-
cation such that the specified patterns and rules can be invoked from Java code without
casting all results and losing type safety (Section 6.1). Section 6.2 describes how the API
delegates method calls to the graph transformation interpreter, while Section 6.3 deals
with the usage of the API. Finally, Section 6.4 presents the realization of features which
exploit the incrementality of the underlying pattern matcher.

6.1 Code Generation for a Typed Java API

The graph transformation specification is placed in a graph transformation project in the
Eclipse IDE.1 All gt files must be placed in the src folder of the project. For each package
containing at least one gt file an API will be generated. The generated code and models
will be placed in corresponding packages in the src-gen folder.

Figure 6.1 gives an overview of the API classes assuming there is a package example con-
taining a gt file with a pattern ex1() and a rule ex2(). For clarity, the class diagram shows
only a small subset of the methods implemented by the abstract super classes. The API
serves as a factory for patterns and rules as it provides methods for all non-abstract pat-
terns and rules defined in the package. The app provides utility methods to create or load
EMF resources and add them to the model and initialize the API for a concrete pattern
matching engine. Within the packages example.api.rules and example.api.matches

subclasses for the concrete patterns and rules are generated:

• The pattern/rule class contains methods for binding context and deleted nodes (ex-
cept local ones) to a specific object (cp. Section 6.3.4 for more information on
node binding). If a pattern/rule has parameters (cp. Section 6.3.5), they must be
initialized in the constructor. In addition, setters for all parameters are generated.

• The match class contains getters for all nodes in the pattern/rule except the ones
marked as local.

Pattern and rule classes inherit from a super class, GraphTransformationPattern or
GraphTransformationRule. Match classes inherit from GraphTransformationMatch.
These super classes are abstract and implement all methods which are independent from
a concrete specification such that only a minimal subset of method implementation needs
to be generated.

1Any Java and plugin project will be automatically converted to a graph transformation project when
adding at least one gt file via the wizard. Note that Eclipse projects can have multiple natures: A
graph transformation project must have at least the GT, Java and plugin nature.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 49

org.emoflon.ibex.gt.api

org.emoflon.ibex.gt.engine

example.api

example.api.rules

example.api.matches

api

pattern

interpreter

GraphTransformationApp

resourceSet: ResourceSet

registerMetaModels()

initAPI(): API

GraphTransformationAPI

+ getModel(): ResourceSet

+ setDPO()

+ setSPO()

+ updateMatches()

GraphTransformationPattern

parameters: Map<String, Object>

convertMatch(IMatch): M

+ findAnyMatch(): Optional<M>

+ findMatches(): Collection<M>

+ getParameters(): Map<String, Object>

getParameterNames(): List<String>

+ subscribeAppearing(Consumer<M>)

+ subscribeDisappearing(Consumer<M>)

+ subscribeMatchDisappears(M, Consumer<M>)

GraphTransformationRule

+ apply(): Optional<M>

+ setDPO()

+ setSPO()

GraphTransformationMatch

GraphTransformationInterpreter

+ apply(IMatch, PushoutApproach, Map<String, Object>): Optional<IMatch>

+ matchStream(String, Map<String, Object>): Stream<IMatch>

ExampleApp

ExampleAPI

+ ex1(): Ex1Pattern

+ ex2(): Ex2Rule

Ex1Pattern

+ bindA(A): Ex1Pattern

Ex2Rule

+ bindA(A): Ex2Rule

Ex1Match

+ getA(): A

Ex2Match

+ getA(): A

+ getB(): B

Figure 6.1: Overview of the API Java Classes

50 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

One difference to other graph transformation tools which provide an API for the specified
rules (e. g. EMorF, Henshin)2 is that the API generated by eMoflon::IBeX-GT is typed
to avoid casting in the code using the API (cp. Section 6.3). If the usage of the API
does not fit to the pattern or rule specification, the developer will get error messages at
compile time instead of class cast exceptions at runtime. The typing in the API requires
generated code for the meta-models used in the patterns and rules, as the interfaces of
those are referenced in the generated API code. Per default, eMoflon::IBeX-GT assumes
that the generated code for the meta-model is in a Java package named as the package in
the Ecore file of the meta-model. This can be adjusted for custom use cases via a setting
in a properties file.3

6.2 Graph Transformation Interpreter

The interaction of the GraphTransformationInterpreter and the API is explained in
this section. The interpreter is independent of a concrete rule specification and ignores
typing (i. e. everything is an Object in the method signatures, cp. Figure 6.1). The API
provides a typed interface for the graph transformation interpreter such that all methods
only accept objects of the correct type as defined in the editor specification. Figure 6.2
illustrates how the API classes (shown with a purple border) use the graph transformation
interpreter (olive border). The interpreters for context, deletion and creation are shown
in their typical colors black, red and green.

...API

...Pattern
or ...Rule

...Match

graph transforma-
tion interpreter

delete
interpreter

pattern
matcher

create
interpreter

creates instances

converts matches

fetch matches

filters & returns matches

subscribe matches

notify of matches

initializes

reports matches

delegates
deletion

delegates creation

Figure 6.2: API and Graph Transformation Interpreter

2The tool Viatra [HVRU17] also provides a generated, typed API in a similar way as eMoflon::IBeX-GT,
but cannot handle rule applications.

3see appendix of the handbook [AR18], Section “Frequently Asked Questions”

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 51

The graph transformation interpreter initializes the pattern matching engine (Democles)
by registering the pattern set. Democles will report any appearing and disappearing
matches such that the graph transformation interpreter can maintain a set of IMatches
for each pattern. IMatches are an untyped representation of matches, which abstracts
from the structure in the concrete pattern matching engine.

Remember that the API class is a factory for patterns and rules, i. e. the methods return
an instance of a pattern or a rule. On a pattern/rule instance nodes and parameters can
be bound to a fixed value (cp. the following section for details). When a method for
querying matches is called on a pattern or a rule, the call is delegated to the graph
transformation interpreter which will return the matches as a Stream of IMatches. Using
a Stream, unnecessary conversions between Streams and collections can be avoided in
the implementation of the API. If nodes are bound or parameters are set, the matches
will be filtered according to the fixed nodes or parameter values. If a pattern is defined
as being one of multiple alternative patterns, the graph transformation interpreter will
combine the matches of all alternative patterns and remove duplicates (cp. Section 5.2.3.3).
Before a pattern or a rule returns the matches, these matches are converted to a typed
representation.

Before a rule can be applied, a match must be found where the rule can be applied to.
If a rule contains only created elements, the rule is always applicable. An empty match
will be generated in this special case. Rule applications are delegated to the delete and
the create interpreter which handle the rule application according to the defined pushout
approach using the create or delete patterns from the IBeX model.

6.3 Usage of the API

This section deals with the usage of the Java API. The API features are explained using
small example code snippets.

6.3.1 Initialization and Conventions on EMF Resources

An EMF model is assumed to be represented by a ResourceSet, containing one or more
resources (files, usually having the file extension xmi). If not explicitly specified, the
first resource in the ResourceSet is chosen as default resource. All created nodes whose
resource is not determined automatically due to their container object, will be placed in
the default resource. Deleted nodes will be moved to a trash resource, which is created
automatically.

The generated app class provides convenient methods for model initialization and setting
the default resource. The meta-models used by the patterns and rules in the API will be
registered automatically. The easiest way to initialize an API with a model is to implement
a subclass of the Democles app generated in the API package, as shown in Listing 6.1. As
the method names suggest, the method createModel(URI) creates a new empty resource
with the given URI, while loadModel(URI) loads an existing resource.

In this case, the file newModel.xmi will be the default resource such that created el-
ements will be added to this file – except if the container of the created elements is an
object in the file model.xmi. To use model.xmi as the default resource, it can be set via
setDefaultResource(Resource). Alternatively, changing the order of the two method
calls adding a resource to the model will lead to the same result.

52 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

1 public class MyGTApp extends

SheRememberedCaterpillarsGraphTransformationDemoclesApp {

2 SheRememberedCaterpillarsGraphTransformationAPI api;

3

4 public MyGTApp () {

5 String path = "./ instances/";

6 createModel(URI.createFileURI(path + "newModel.xmi"));

7 loadModel(URI.createFileURI(path + "model.xmi"));

8

9 api = initAPI ();

10 }

11

12 public static void main(String [] args) {

13 new MyGTApp ();

14 }

15 }

Listing 6.1: Loading Models

6.3.2 Model Queries

Listing 6.2 shows examples how the model can be queried via the API using the pattern
findCharacterOnExit (Figure 5.4). All methods for querying matches fetch the untyped
matches from the interpreter and convert the matches into the typed representation. To
get the number of matches, one should always use the method countMatches() because
the implementation avoids the conversion.

1 public Optional <Character > findAnyCharacter () {

2 return api.findCharacterOnExit ()

3 .findAnyMatch ()

4 .map(m -> m.getCharacter ());

5 }

6

7 public List <Character > findAllCharacters () {

8 return api.findCharacterOnExit ()

9 .matchStream ()

10 .map(m -> m.getCharacter ())

11 .collect(Collectors.toList ());

12 }

13

14 public long countCharacters () {

15 return api.findCharacterOnExit ().countMatches ();

16 }

Listing 6.2: Model Queries

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 53

6.3.3 Rule Applications and Pushout Approaches (DPO vs. SPO)

Rules can be applied via the apply() method, which returns an Optional for the co-
match. The Optional may be empty if the rule is not applicable.4 Per default rules are
applied according to the single pushout approach such that any dangling edges are deleted.
This behavior can be changed on API level (holds for all future rule applications which
do not overwrite this setting), for all applications of a certain rule or for a concrete rule
application.

In Listing 6.3 the rule is applied via DPO. Note that the set pushout approach holds
just for this rule. To enable DPO for the applications of all rules, the setting must be
changed on API level via api.setDPO().

1 public void moveDPO () {

2 api.moveCharacterToNeighboringPlatform ()

3 .setDPO ()

4 .apply ()

5 .ifPresent(m -> {

6 String name = m.getCharacter ().getName ();

7 System.out.println("Character " + name + " moved to

neighboring platform");

8 });

9 }

Listing 6.3: Usage of DPO for a Single Rule Application

6.3.4 Node Bindings

By default all nodes of a pattern are unbound, i. e. they can be matched to any object of
the correct type. A node binding fixes a node to a specific object. At runtime the graph
transformation interpreter filters the matches reported by the pattern matching engine for
those whose nodes are bound to the same objects as defined by the node binding.

A node binding can be defined for all context nodes and deleted nodes (except local
nodes).5 The API provides typed bind methods for those nodes. For convenience there
are methods to bind all parameters of any match to the nodes of the same name. This
allows to pass the bound objects in a match result of a model query or a rule application
directly to another query or rule.

Listing 6.4 gives an example for the usage of node bindings: The query selects an
arbitrary character which is not on an exit platform. After that, this character is bound to
the application of the rule moveCharacterToNeighboringPlatform (Figure 5.6) such that
only the selected character can be moved if a match for the rule can be found. The method
moveCharacter2 in Listing 6.5 does exactly the same as moveCharacter, since character
is the only node name which occurs both in the pattern findCharacterNotOnExit and
in the rule moveCharacterAcrossBridge (cp. Figure 6.3). So the bind-method will bind
only the character and ignore the other nodes.

4A rule is not applicable if there is no match for the rule or the DPO approach forbids the rule application
on the chosen match due to dangling edges.

5Since local nodes are not contained in matches, so local nodes cannot be used as a filter on matches.

54 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

1 public void moveCharacter () {

2 api.findCharacterNotOnExit ()

3 .findAnyMatch ()

4 .ifPresent(m -> {

5 api.moveCharacterToNeighboringPlatform ()

6 .bindCharacter(m.getCharacter ())

7 .apply ();

8 });

9 }

Listing 6.4: Node Binding

1 public void moveCharacter2 () {

2 api.findCharacterNotOnExit ()

3 .findAnyMatch ()

4 .ifPresent(m -> {

5 api.moveCharacterToNeighboringPlatform ()

6 .bind(m)

7 .apply ();

8 });

9 }

Listing 6.5: Node Binding based on Naming Convention

Figure 6.3: Common Nodes of the Pattern findCharacterNotOnExit and the Rule
moveCharacterToNeighboringPlatform

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 55

6.3.5 Parameters

Patterns and rules may define parameters of primitive data types to be used in attribute
assignments or conditions. In contrast to node bindings, parameters are required. When
calling a pattern or rule, all parameters must be set in the constructor. The parameter
values may be changed using the setters.

Attribute conditions with parameters are filtered by the graph transformation inter-
preter similar to node bindings while all other attribute conditions are checked by the
pattern matching engine. Parameterized attribute assignments will set the value of the
parameter as new attribute value. An example for this is shown in Listing 6.6: The pa-
rameter for the color is passed to the pattern findCharacterOfColor (Figure 5.7) in the
constructor (so it cannot be omitted!). Without the parameter, the attribute condition
could not be evaluated. The interpreter knows all matches for the pattern reported by
Democles and filters those for the ones whose color attribute has the given value BLUE.

1 public void outputBlueCharacters () {

2 api.findCharacterOfColor(COLOR.BLUE)

3 .forEachMatch(m -> {

4 System.out.println(m.getCharacter ().getName ());

5 });

6 }

Listing 6.6: Parameters

6.4 Exploiting the Incrementality

As eMoflon::IBeX-GT is based on an incremental pattern matcher, the incrementality can
be exploited to support certain scenarios which are more difficult to implement without
support for incrementality. The following sections describe tasks which could not be
easily supported without incrementality because they require permanent observation of
all matches. The incremental features add support for reactive programming [BCvC+13],
which is based on automatic propagation of changes.

6.4.1 Notification System

The pattern matcher permanently maintains a set of matches for all patterns and notifies
the interpreter every time a new match appears or an existing match disappears. This can
be used to provide a notification system in the API: Subscribers can register themselves
for notifications of appearing and disappearing matches. If subscribers are registered, the
interpreter forwards the notification of appearing or disappearing matches to them.

One application scenario is the permanent checking of constraints via reception of no-
tifications whenever matches for the observed pattern appear or disappear. For positive
constraints there must be a match, otherwise the constraint is violated. For negative
constraints any reported match is a violation of the constraint.

In the context of the She Remembered Caterpillars game the notification system could
be used to check whether the goal of the game (all characters stand on an exit platform)
is reached by subscribing all matches for a character not on an exit platform: As soon as

56 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

the number of characters which are not on an exit platform reaches 0, the game is over.
Note that one needs to subscribe to the disappearing matches as well such that characters
leaving an exit platform are added to the set again. Listing 6.7 shows the necessary code
for initializing and maintaining the set of characters which have not reached their final
destination yet. The defined Consumers will be called automatically whenever a change in
the set of matches for the subscribed pattern is reported.

Without the notification system, one would need to check the subscribed pattern after
every change in the model to be sure to notice that the game is over as soon as the
last character reached an exit platform. The incremental pattern matcher notices even
changes made by third party-applications and not via the API – and the changes in the
set of matches triggers notifications if a subscription has been registered for those.

1 Set <Character > characters = new HashSet <Character >();

2

3 public void registerSubscriptions () {

4 FindCharacterNotOnExitPattern notOnExit = api.

findCharacterNotOnExit ();

5 notOnExit.matchStream ()

6 .map(m -> m.getCharacter ())

7 .forEach(c -> this.characters.add(c));

8 notOnExit.subscribeDisappearing(m -> {

9 this.characters.remove(m.getCharacter ());

10 checkEndOfGame ();

11 });

12 notOnExit.subscribeAppearing(m -> {

13 this.characters.add(m.getCharacter ());

14 checkEndOfGame ();

15 });

16 }

17

18 private void checkEndOfGame () {

19 if (this.characters.size() == 0) {

20 System.out.println("GAME OVER!");

21 }

22 }

Listing 6.7: Subscription of Notifications

6.4.2 Instant Automatic Rule Application

Due to the notification of appearing matches, instant and automatic rule application can
be easily supported. If automatic rule application is enabled, the notification system will
send a notification and the interpreter will apply the rule immediately after the new match
appeared. Note that this only holds for matches reported after enabling automatic rule
applications. Rule applications can be subscribed via the API’s notification system.

Listing 6.8 shows an example of enabling automatic rule application. Assuming that
the rule transformBlueAndRedToPurpleCharacter (Figure 6.4) shall be applied as soon
as a match for this rule is found, i. e. a blue and a red character stand on the same

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 57

platform. Via a subscription of the rule applications, a Consumer outputs “Automatic
transformation” on the console whenever the rule is applied.

1 public void enableAutoTransformations () {

2 TransformBlueAndRedToPurpleCharacterRule transformation =

api.transformBlueAndRedToPurpleCharacter ();

3 transformation.subscribeRuleApplications(m ->

4 System.out.println("Automatic transformation"));

5 transformation.enableAutoApply ();

6 }

Listing 6.8: Instant Automatic Rule Application

Figure 6.4: Rule transformBlueAndRedToPurpleCharacter

58 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

7 Evaluation

This chapter evaluates the implementation of eMoflon::IBeX-GT with respect to the fol-
lowing criteria:

• compliance with the requirements from Chapter 3, i. e. whether all requirements for
the tool are met or not (see Section 7.1),

• correctness of the graph transformation API, i. e. whether the correct matches are
found and the rules are applied as defined by the semantics or not (see Section 7.2),

• correctness of the validation of the rule specification in the textual editor, i. e.
whether the user gets feedback for faulty specifications or not (see Section 7.3),

• performance/scalability depending on model size (see Section 7.4),

• and feedback on the usability of the eMoflon::IBeX-GT received from actual end-
users (see Section 7.5).

7.1 Compliance with the Requirements

In Chapter 3 we presented a list of requirements which are checked for eMoflon::IBeX-GT
in the following.

Incrementality
eMoflon::IBeX-GT uses an incremental pattern matching engine. Section 6.4 presents
how the incrementality of the engine can be used to support incremental features in
the API.

Interpreter
The eMoflon::IBeX-GT interpreter is used by the API to realize model queries and
transformations. It can be used without the API if someone prefers to deal with
type casting in his/her code directly.

Integration with a TGG tool
eMoflon::IBeX-GT is integrated into the eMoflon::IBeX tool suite which combines a
GT and a TGG tool with some shared libraries. After refactoring the TGG part to
use the IBeX pattern model as well (cp. Section 8.3) even larger parts of the code
can be shared.

Mature integration with a general purpose language
The API is a typed interface for the graph transformation interpreter. This allows
to a type-safe invocation of model queries and rule applications.

Dedicated support for model queries
Matches for patterns and rules can be queried via the API.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 59

DPO or SPO semantics
The API uses with SPO semantics by default, which can be changed to DPO (see
Section 6.3.3). The pushout approach can be set for the whole API, a rule or just a
single rule application.

Modularity on rule level
Pattern refinement (see Section 5.2.4) has been implemented to support modularity
on rule level.

Application conditions
The new graph transformation tool has mature support for positive and negative
application conditions, which can be combined via OR and AND (with the only
restriction that one must define the logical expressions in DNF).

Attribute manipulation
Possible values for attributes in eMoflon::IBeX are parameters, constants and other
attributes, but not user-defined attribute values. We have decided to skip this ad-
vanced feature due to the time limit of this thesis. In addition, many examples do
not require user-defined attribute values at all. However, the API integration allows
to add arbitrary attribute assignments and constraints: Assignments can be realized
via a subscription for rule applications (and setting the attribute value in the reg-
istered Consumer). Matches can be filtered for additional constraints including any
arbitrary conditions on attribute values, e. g. using the filter method for Streams.

Textual concrete syntax and visualization
The patterns and rules are specified in a textual editor. A graphical visualization of
the patterns and rules is provided, flattening the refinement hierarchy.

Modeling standard
eMoflon::IBeX-GT uses the modeling standard EMF.

End-user documentation
A handbook [AR18] introduces eMoflon::IBeX-GT based on an example application.
The appendix contains a complete reference of all features of the pattern language
and the API, intended for advanced users.

To summarize the evaluation with respect to our requirements list, all requirements are
fulfilled except support for user-defined attribute values.

7.2 Correctness of Graph Transformation

To test for correctness, many JUnit tests on API level have been written to ensure that
everything works as expected for many scenarios using different meta-models. Although
tests can never guarantee correctness, a test suite is important to check that existing graph
transformation specifications still work after the latest changes.

Table 7.1 gives an overview of the JUnit tests. Each package contains the tests for
another API, defined in a graph transformation project of the same name. For each
package the number of involved meta-models, the number of patterns and rules in the
API and the number of test cases is given.

60 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

Test suite
Test package

Meta-
models

Patterns
and rules

Test
cases

org.ibex.emoflon.ibex.gt1

BPMN 1 6 2

BPMNIR 2 4 2

ClassMultipleInheritanceHierarchy 1 16 7

FerrymanProblem 1 15 7

SheRememberedCaterpillars 1 29 18

SimpleFamilies 1 51 32

SimpleFamiliesToSimplePersons 2 5 1

SimpleFamiliesToSimplePersons22 2 – 1

SimplePersons 1 9 2

de.upb.mbse.taxcalculationexample3

businessrules.operationalsemantics 1 25 7

businessrules.structuralsemantics 1 6 10

cheat.rulestoreportstrafo 2 6 1

hot 2 2 1

rulestoreportstrafo 2 1 1

Table 7.1: JUnit Tests for Graph Transformation on API Level

The execution of the TestsuiteGT covers 89.7 % of the interpreter, the abstract API classes,
and utilities for manipulating EMF models (shared with the TGG part via the Common
project). The uncovered parts are mainly error cases in the transformation to Demo-
cles patterns and in the interpreter. In addition, the check for dangling edges (neces-
sary for DPO applicability) needs more tests to handle all cases (the combinations of
incoming/outgoing and containment/other references). Executing the JUnit test suite for
eMoflon::IBeX-TGG covers all cases for the deletion utility methods. A good coverage
for deletion is quite important, as the order of deleting nodes and references often caused
errors in Democles.

Building all projects of TestsuiteGT covers 94.1 % of the code for the build of GT
projects, which generates the API and the IBeX pattern model (excluding utility methods

1https://github.com/eMoflon/emoflon-ibex-tests, project TestsuiteGT
2using two separate APIs for both involved meta-models (SimpleFamilies API and SimplePersons API)
3JUnit tests written by Anthony Anjorin as examples for the MBSE lecture, https://github.com/

mde-lab-sessions/running-example-for-lecture

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 61

https://github.com/eMoflon/emoflon-ibex-tests
https://github.com/mde-lab-sessions/running-example-for-lecture
https://github.com/mde-lab-sessions/running-example-for-lecture

from the Common project and generated code for the meta-models of IBeX patterns and
the GT API). The uncovered parts are error cases which must not occur when building a
project not containing syntax errors (such as the test suites).

7.3 Validation in the Textual Editor

In addition to the API and build code, the textual editor is unit-tested as well to ensure
that faulty rule specifications are detected correctly: 111 test cases for scoping, validation,
formatting, and the flattening of pattern refinement with a code coverage of 96.2 % yield
a high confidence that the editor still discovers errors correctly after refactoring and the
implementation of new features.

The tests for the editor mainly focus on cases the editor needs to report an error in
scoping or validation, as the case that the textual specification does not contain any errors
is implicitly tested when generating the code for the rules whose APIs are tested in the
test suites described above: If there were any errors in any graph transformation project
used in the API test suite, they would be reported upon code generation.

The integration into Eclipse (e. g. outline, syntax highlighting, visualization) is not
checked with JUnit tests, but can be easily checked manually by opening some files.

The editor tests also help to speed up the development process: Normally changes in
the editor validation require a restart of the runtime Eclipse application in which the
validation rules can be checked manually. Implementing a test case first, it is possible
to check the implementation without a restart of the runtime Eclipse application, as the
JUnit test suite can be executed directly in the development workspace.

7.4 Performance and Scalability

Although performance and scalability are not the focus of this thesis, a small evaluation
of runtimes for different model sizes is presented in the following. The performance is
evaluated for model generation, model queries, and adding/deleting elements. All mea-
surements were executed on a notebook with an Intel Core i-4510U processor (two cores,
with hyper-threading four logical processors, with 2.0 GHz) and 16 GB main memory.
The tests were executed on a Windows 8.1 system with Java version 8 Update 172 (64
bit). All runtimes are given as arithmetic mean of 100 test executions.4

As shown in Figure 7.1, the runtime for the generation of a new model with one game
and x platforms (simple platform or exit, randomly chosen for each new platform) grows
linear with x. Note that the time axis is logarithmic such that even small differences can
be seen in the diagram. The number of model elements is limited by the available main
memory, as the model and the found matches are kept in memory all the time. This result
is expected due to the nature of the incremental pattern matcher. Note that the maximal
model size which can be handled by eMoflon::IBeX-GT and the runtimes depend on the
number of the observed patterns because in general observing more patterns will result
in more matches, such that more main memory is required by the pattern matcher. For
the She Remembered Caterpillars API with 29 patterns and rules, the tests for 320,000
elements needs nearly the whole main memory of the test environment. Trying to run the
performance tests for 340,000 elements leads to an OutOfMemoryError.

4The source code for the performance tests can be found in the project TestsuiteGT as well.

62 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

Figure 7.1: Runtime for Creation and Queries depending on Model Size

After creating the models as described above, the model is queried for all standalone
(simple) platforms and empty exits with the patterns findStandalonePlatform and
findEmptyExit known from Section 5.2.3. Queries for the number of matches require
a constant time, while queries for all matches have a linear overhead due to the conversion
to typed matches. Even for 320,000 matches the time is only 0.15 seconds.

As last insights, the time for adding 100 more platforms to the model of the given size
and deleting them afterwards is shown. The time for adding the platforms is independent
of the current model size. The deletion of the same 100 platforms is much more expensive,
because this requires finding the matches for the pattern and filtering them for the ones
with the respective platform (which will be exactly one in this case). As there are many
platforms, it takes a while to find the match which bounds the platform to be deleted – the
time for this step increases with the number of available matches, which is proportional
to the model size in our example. Deleting any 100 platforms instead of 100 specific
ones takes less time, as matches for the patterns must not be filtered for the ones with
the correct node binding. The adding of elements also requires finding a match (in the
pattern for creating a platform the game must be matched such that the containment edge
between the game and the platform can be created), but as there is only one match this
operation is faster than the deletion for which a lot of matches can be found.

For model sizes larger than 260,000 elements the measured runtimes vary a lot and the
runtimes for model generation and deletion are not linear anymore.

For the performance tests presented in Figure 7.1, the API has been initialized with a
resource set containing just one empty resource. In this scenario, Democles cannot find

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 63

any matches during the initialization (because the model contains no elements). Whenever
the model is changed by creating new elements, new matches are found and added to the
maintained set of matches.

Figure 7.2 illustrates the initialization of an API for loading existing models of different
sizes (instead of starting with an empty model). In this case, Democles has to search
for all matches of all patterns during the initialization – the larger the model, the more
matches will be found. The time for updating the set of matches grows linear with the
model size, while the time for the initialization seems to be worse than linear. After the
initialization and the first update, the queries can be answered in constant time (plus a
small overhead for the conversion to typed matches when all matches are returned) just
as before.

Figure 7.2: Runtime for Initialization and Queries depending on Model Size

As the measurements only use one meta-model and the model has a certain structure
(one root element with a lot of children), further tests are necessary to check whether the
results can be generalized for arbitrary models.

In addition to the model size, the total number of observed patterns has a significant
impact on the runtimes, as more patterns lead to larger times for searching the pattern
structures and more matches to maintain. The dependency on the size and complexity of
the observed patterns (e. g. number of nodes and edges in a pattern, usage of application
conditions) has not been evaluated yet.

64 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

7.5 Usability and End-User Feedback

As eMoflon::IBeX-GT is intended to be used for teaching purposes, students using the tool
in the lecture “Model-Based Software Engineering” (MBSE) and students writing their
master’s theses in the area of graph transformation were asked to give feedback via an
online questionaire5 being a mix of multiple choice and open questions.

7.5.1 Experience of the participants

20 students with a different level of experience with graph transformation, all members
of our intended target group, participated in the survey (cp. Figure 7.3). Most of the
participants have no or only little experience with graph transformation and model-driven
engineering in general. With one exception, all participants have programming experi-
ence and used the Eclipse IDE before. Most participants are not familiar with visual
(programming) languages.

Figure 7.3: Experience of the Participants

7.5.2 Textual and Visual Syntax

Figure 7.4 shows how the end-users rated the textual and visual syntax. Most users think
that the textual syntax is understandable (average 3.6 out of 5 stars, 90 % gave 3 or 4
stars). Comments on the syntax are mostly positive, and highlight the visualization and
the intuitive syntax. For example, participants stated that the textual syntax “easy to
understand and write down” and that “the ++ and −− is intuitive, and there are no
unnecessary chars like ;”.

5https://docs.google.com/forms/d/1r5pgkTv0CcvTQoqHlUuHcQqULl6A8CmbHgpt961BtHU

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 65

https://docs.google.com/forms/d/1r5pgkTv0CcvTQoqHlUuHcQqULl6A8CmbHgpt961BtHU

The participants especially like the mix of the textual and the visual syntax (average
4 stars, 70 % gave 4 or 5 stars). The visualization (average 4.0 stars) is considered to be
more helpful than the error messages (average 3.65 stars). The usability of the editor as
a whole is rated with 3.45 out of 5 stars on average, 90 % giving 3 or more stars.

Suggestions for improvements of the editor mainly focus on the visualization. 30 %
would like to edit the visual syntax directly, which has not been implemented due to
the complexity of visual editors (cp. the requirements). They also point out that the
overlapping of elements is an issue for large patterns. As the layout of the visualization is
handled by PlantUML, there seems to be only little potential for improvements with the
current choice of visualization tool.

Figure 7.4: Evaluation of Textual and Visual Syntax

7.5.3 Language Features

The users’ estimation regarding the importance of selected language features is shown in
Figure 7.5. Complex graph conditions are the feature with the highest average rating
(3.7), followed by application conditions (3.65) and attributes (3.55). Pattern refinement
and incrementality6 are considered to be less important (2.9), which is surprising for us.

In our requirements list (Chapter 3) we have considered incrementality and pattern
refinement as the most important features, especially as there are no other graph transfor-
mation tools with support for those features. One reason for this surprising result might
be that the students asked for feedback only have a little experience with the tool and
have not used all features in their own specifications yet. Another important point is that

6The incremental features are called “support for reactive programming” in the survey because the
participants of the survey do not know the details of the implementation based on incremental pattern
matching.

66 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

both features make an impact for large applications maintained and evolved over a long
time.

Figure 7.5: Importance of Language Features

7.5.4 Potential for the Usage in Java Applications

The users have been asked to comment on the integration with Java code. Suggestions
for improvements focus on a possibility to jump from the generated Java classes to the
specification via one click (“Make it possible to directly navigate to the patterns/rules from
the code”), although switching between gt files and the Java classes is a quite seamless
experience from the point view of 35 % of the participants, and average for another 55 %
of them. As this gets more complex when the specification consists of many gt files, a
linking between editor patterns/rules and Java classes is planned for the future.

Most users think that the pattern language is expressive enough to specify patterns of
realistic complexity in practice (average 3.55 out of 5 stars). Almost a two-third majority
voted with 4 or 5 stars.

Asked for the main arguments for using eMoflon::IBeX-GT in a Java project many
students named the visualization, as this makes the specification understandable for non-
programmers. Furthermore, one user commented: “Using patterns is closer to the un-
derlying model, easier to adapt to changes, less error-prone and much less work than
hard-coding the operations on the EMF model”. Drawbacks in the users’ opinion are
performance, a more complex project setup (considered to be costly especially for small
projects) and a missing debugging facility. Actually, debugging is possible via analyzing
the pattern specifications and the received matches.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 67

Figure 7.6: Evaluation of the Potential for the Usage in Java Applications

7.5.5 Handbook

The handbook [AR18] introduces eMoflon::IBeX-GT by developing an example application
(“Sokoban”) step by step. In an appendix all features of the pattern language and the API
are explained, as not all of them are used in the example. The students enjoyed working
through the handbook (“fun factor” average 4.0 out of 5 stars). The appendix is rated as
average by most students. The students were asked for feedback after working through
the tutorial, which does not require the appendix. The pattern and API references in the
appendix are considered for advanced users who need to lookup some details.

Figure 7.7: Evaluation of the Handbook

68 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

8 Conclusion and Future Work

This thesis presented eMoflon::IBeX-GT, a new graph transformation tool with a Java
API exploiting the incrementality of its underlying pattern matching engine, Democles. It
provides mature support for all requirements from Chapter 3 with some minor restrictions
(cp. Sections 7.1 and 8.5). In Chapter 4 we have seen that no other GT tool supports all
requirements.

8.1 Evaluation of Performance

As performance is not the focus of this work, performance has only been evaluated shortly
with respect to scalability for models of different sizes. The evaluation in Section 7.4
clearly indicates that the maximal model size which can be handled by eMoflon::IBeX is
limited by the available main memory. It also shows that the time for creation is linear to
the number of created elements, but the time for answering queries on the model is nearly
constant. The incrementality helps to reach a constant response time for model queries, as
the matches are not searched on demand, but maintained permanently. However, queries
with bound parameters seem to have a worse performance as filtering the matches reported
by Democles is necessary.

8.2 Optimization of the Pattern Network

Due to a missing detailed evaluation of the performance, optimizing the pattern net-
work generated for the graph transformation specification with respect to performance
remains as future work. The insights for optimizing the patterns of eMoflon::IBeX-TGG
by Weidmann (see [Wei18], Section 5.2) could be a useful starting point for the optimiza-
tion. eMoflon::IBeX-TGG has configuration flags for the different possible patterns (e. g.
whether all edges are extracted into an invoked pattern) such that the user can evaluate
which configuration is best for the used TGG rules. A similar approach could be imple-
mented for GT, hopefully improving the performance for many pattern specifications.

Currently the transformation from the editor model into the IBeX model does not exploit
the refinement hierarchy. Instead the patterns are flattened into a structure without re-
finement before the transformation. It could be checked whether the refinement hierarchy
can be exploited for the pattern network to improve the performance. However, a similar
approach for the TGG part [Sto17] has not shown significant performance improvements.

8.3 Shared Patterns with eMoflon::IBeX-TGG

In future, IBeX patterns should be shared with the TGG part of eMoflon::IBeX. The
IBeX pattern model is designed such that this should be easily possible. Just for at-
tributes the IBeX model cannot handle the complexity of attribute constraints necessary

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 69

for eMoflon::IBeX-TGG such that a little extension of the IBeX model is required. Tech-
nically, the following steps are necessary to use the IBeX pattern model in the TGG part
as well:

• the extension of the IBeX pattern meta-model such that attribute constraints can be
specified in the complexity necessary for TGG specifications (especially user-defined
attribute constraints),

• the transformation of the internal TGG model to the IBeX pattern model,1

• the adaption of the transformation from the IBeX pattern model to Democles pat-
terns (and the initialization of the Democles patterns in the DemoclesGTEngine)
to handle the additional attribute constraints (after that the transformation from
IBlackPatterns to Democles patterns in the TGG part can be removed),

• the removal of the pattern initialization in the DemoclesTGGEngine (because this
can be inherited from the DemoclesGTEngine as soon as both engines are initialized
with IBeX patterns),

• and the adaptation of the green and red interpreter for TGGs (handling creation and
deletion during rule applications), their interfaces, and the operational strategies
using them.

Maybe the current IbexGreenInterpreter for TGGs can be even replaced with the
GraphTransformationCreateInterpreter, if create patterns are generated in the IBeX
pattern model. For the red interpreter an own implementation for the TGG part will
remain necessary, as deletion for TGGs is undoing a previous rule application instead of
applying the deletions specified by a delete pattern.

8.4 Applications using Graph Transformation and TGG

Besides the integration of eMoflon::IBeX-GT and eMoflon::IBeX-TGG from the perspec-
tive of the eMoflon::IBeX development team, both parts can also be used together by
end-users. An example is the usage of graph transformation for preprocessing a model
synchronized with another model via a TGG.2 Currently this is possible, but requires some
knowledge how the pattern matcher works.

After eMoflon::IBeX has been migrated to the IBeX pattern model, it may be possible
to use only one Democles engine instance in an application using a GT API and a TGG
in order to save memory and sharing common patterns (e. g. edge patterns). Currently
the GT API and the operationalization for the TGG use two different engines.

8.5 Expressiveness of the Graph Transformation Rules

The specification of attribute assignments and conditions is currently restricted to a subset
of the theoretical possibilities. Regarding attributes, the reason is a lack of time during the

1Alternatively a direct transformation from the editor TGG model to the IBeX pattern model could be
implemented, but this would be a huge step, as the IBeX pattern model completely abstracts from
TGGs.

2The eMoflon::IBeX-TGG handbook [Anj18] provides an example for GT as a preprocessor.

70 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

implementation of this thesis. In the future it could be evaluated whether the implemented
subset is satisfying for all use cases. However, the API allows to set arbitrary attribute
values after rule applications (e. g. via a subscription of rule applications with a Consumer

calculating and setting the attribute value in self-written Java code). After eMoflon::IBeX-
TGG has been refactored to use IBeX patterns as well, the IBeX model needs to support
more complex attribute conditions. So just the editor and the transformation from editor
patterns to IBeX patterns has to be extended.

The support for complex graph conditions is restricted to expressions in DNF, which
does not limit the expressiveness. In general, this can lead to longer logical expressions the
user has to define. Technical limitations of the currently used pattern matching engine
are the reason for this decision, as Democles cannot handle alternatives. As described
in Section 5.2.3.3, the matches for the alternatives are collected separately and merged
by the interpreter. This approach ensures that as much as possible of the work is done
by the pattern matcher, which ensures that invalid matches are filtered out in the first
step already. In the case that support for alternatives is implemented in Democles, the
implementation could be adjusted to check the alternatives directly in Democles which
avoids combining and removing duplicates in the graph transformation interpreter.

If it turns out that the restriction to expressions in DNF is disturbing of many users,
one could allow arbitrary logical expressions in the editor and transform the expression
into the DNF before the patterns are transformed.

8.6 Improvements to the Editor

The feedback of end-users pointed out that a link between editor patterns/rules and Java
classes would be helpful (cp. Section 7.5.4). A visualization is intentionally not editable
according to our requirements list, as this requires a more complex implementation and
the handling of the layout. Although some end-users have suggested an editable visual
syntax, our initial consideration has not changed.

Currently the syntax for the textual specification in the GT and TGG editor and the
formatting algorithms are not completely consistent. This should be adjusted for full
consistency between GT and TGG.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 71

A List of Projects

GT Editor GT GT Democles

Editor Utils Common

TGG Editor TGG TGG Democles

uses

uses

uses

uses

uses

uses

uses

uses

uses

uses

uses

(cp. Section 5.1)

Repository Component Plugin Project

emoflon-ibex-ui1 Editor Utils org.emoflon.ibex.editor.utils

GT Editor org.emoflon.ibex.gt.editor
org.emoflon.ibex.gt.editor.ide
org.emoflon.ibex.gt.editor.ui

TGG Editor org.emoflon.ibex.tgg.editor
org.emoflon.ibex.tgg.editor.ui
org.emoflon.ibex.tgg.ide

emoflon-ibex2 Common org.emoflon.ibex.common

GT org.emoflon.ibex.gt

TGG org.emoflon.ibex.core.language
org.emoflon.ibex.core.runtime

emoflon-ibex-democles3 GT Democles org.emoflon.ibex.gt.democles

TGG Democles org.emoflon.ibex.tgg.ide.democles
org.emoflon.ibex.tgg.runtime.democles

Table A.1: List of Projects in the eMoflon::IBeX Tool Suite

1https://github.com/eMoflon/emoflon-ibex-ui
2https://github.com/eMoflon/emoflon-ibex
3https://github.com/eMoflon/emoflon-ibex-democles

72 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

https://github.com/eMoflon/emoflon-ibex-ui
https://github.com/eMoflon/emoflon-ibex
https://github.com/eMoflon/emoflon-ibex-democles

B List of Figures

1.1 She Remembered Caterpillars Example . 8

1.2 She Remembered Caterpillars Class Diagram 9

2.1 Monomorphism . 12

2.2 Graph Morphism . 12

2.3 Typed Graph Morphism . 13

2.4 Type Graph for She Remembered Caterpillars (simplified) 13

2.5 Typed Graph Instance . 13

2.6 Pushout Diagram . 14

2.7 Application of the Monotonic Rule createCharacter 14

2.8 Double-Pushout Diagram . 15

2.9 Application of the Graph Transformation Rule moveCharacter 16

2.10 Graph Condition . 17

2.11 Application Condition for Monotonic Rules 19

2.12 Negative Application Condition for Monotonic Rules 19

2.13 Negative Application Condition for the Monotonic Rule createCharacter . 19

2.14 Application Condition for Graph Transformation Rules 20

2.15 Negative Application Condition for Graph Transformation Rules 20

5.1 Component Diagram for eMoflon::IBeX . 27

5.2 Model transformations for eMoflon::IBeX-GT 28

5.3 Editor model to IBeX patterns . 29

5.4 Pattern findCharacterOnExit . 30

(a) Textual Syntax . 30

(b) Visualization . 30

5.5 Rule createCharacter . 30

(a) Textual Syntax . 30

(b) Visualization . 30

5.6 Rule moveCharacterToNeighboringPlatform 31

(a) Textual Syntax . 31

(b) Visualization . 31

5.7 Pattern findCharacterOfColor(color: COLOR) 32

(a) Textual Syntax . 32

(b) Visualization . 32

5.8 Rule createBlueCharacter . 32

(a) Textual Syntax . 32

(b) Visualization . 32

5.9 Pattern findEmptyExit . 33

(a) Textual Syntax . 33

(b) Visualization . 34

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 73

5.10 Pattern findStandalonePlatform . 34
(a) Textual Syntax . 34
(b) Visualization . 35

5.11 Pattern findPlatformWithExactlyOneNeighbor 36
(a) Textual Syntax . 36
(b) Visualization . 36

5.12 Pattern findPlatformWithTwoWays . 37
(a) Textual Syntax . 37
(b) Visualization . 38

5.13 Example Model with Matches Reported for Two Alternatives 39
5.14 Rules with Refinements . 41

(a) Textual Syntax . 41
(b) Refinement Hierarchy . 42
(c) Abstract Rule moveCharacter . 42
(d) Rule moveCharacterToNeighboringPlatform 42
(e) Abstract Rule moveCharacterAcrossPlatformConnector 43
(f) Rule moveCharacterAcrossBridge . 43
(g) Rule moveCharacterOverWall . 43

5.15 Simplified Meta-Model of the Editor Model 45
5.16 Simplified Meta-Model of the IBeX Pattern Model 46
5.17 IBeX Context Pattern moveCharacterToNeighboringPlatform 47
5.18 Simplified Meta-Model for Democles Patterns 48

6.1 Overview of the API Java Classes . 50
6.2 API and Graph Transformation Interpreter 51
6.3 Common Nodes of the Pattern findCharacterNotOnExit and the Rule

moveCharacterToNeighboringPlatform . 55
6.4 Rule transformBlueAndRedToPurpleCharacter 58

7.1 Runtime for Creation and Queries depending on Model Size 63
7.2 Runtime for Initialization and Queries depending on Model Size 64
7.3 Experience of the Participants . 65
7.4 Evaluation of Textual and Visual Syntax . 66
7.5 Importance of Language Features . 67
7.6 Evaluation of the Potential for the Usage in Java Applications 68
7.7 Evaluation of the Handbook . 68

74 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

C List of Tables

4.1 Comparison of Graph Transformation Tools 26

5.1 Allowed and Forbidden Node Type Changes in Refined Patterns 40
5.2 Operators of Merged Nodes and References in Refined Patterns 44
5.3 Transformation from the Editor Model into IBeX Patterns 46
5.4 Transformation from IBeX Patterns into Democles Patterns 48

7.1 JUnit Tests for Graph Transformation on API Level 61

A.1 List of Projects in the eMoflon::IBeX Tool Suite 72

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 75

D Listings

6.1 Loading Models . 53
6.2 Model Queries . 53
6.3 Usage of DPO for a Single Rule Application 54
6.4 Node Binding . 55
6.5 Node Binding based on Naming Convention 55
6.6 Parameters . 56
6.7 Subscription of Notifications . 57
6.8 Instant Automatic Rule Application . 58

76 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

E Bibliography

[AKK+17a] Anthony Anjorin, Roland Kluge, Géza Kulcsar, Erhan Leblebici,
Lars Fritsche, and Gergely Varró. An Introduction to Metamod-
elling and Graph Transformations with eMoflon, 2017. Available at
https://github.com/eMoflon/emoflon-docu/releases/download/

emoflon_2.32.0/eMoflonHandbook.pdf. Retrieved 2018-03-07.

[AKK+17b] Anthony Anjorin, Roland Kluge, Géza Kulcsar, Erhan Leblebici, Lars
Fritsche, and Gergely Varró. eMoflon - a tool for building tools, 2017. Avail-
able at http://emoflon.org/. Retrieved 2018-03-07.

[Anj18] Anthony Anjorin. Bidirectional Model Transformation with
eMoflon::IBeX, 2018. Available at https://paper.dropbox.com/doc/

GxyQmS2198CgxBhOCj8Hv.

[AR18] Anthony Anjorin and Patrick Robrecht. Unidirectional Model Transformation
with eMoflon::IBeX, 2018. Available at https://paper.dropbox.com/doc/

siVjGl9SaMSuBnBYEv6cG.

[AVS12] Anthony Anjorin, Gergely Varró, and Andy Schürr. Complex Attribute Ma-
nipulation in TGGs with Constraint-Based Programming Techniques. In
Frank Hermann and Janis Voigtländer, editors, Proceedings of the 1st Interna-
tional Workshop on Bidirectional Transformations (BX 2012), Tallinn, Esto-
nia, March 25, 2012, 2012. Available at https://pdfs.semanticscholar.

org/b500/bf90a2d00040894da69c876eafe64ed20602.pdf. Retrieved 2018-
07-02.

[BCvC+13] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn
Mostinckx, and Wolfgang de Meuter. A Survey on Reactive Programming.
In ACM Computing Surveys (CSUR), Volume 45 Issue 4, August 2013, New
York, 2013. ACM. Available at http://soft.vub.ac.be/Publications/

2012/vub-soft-tr-12-13.pdf. Retrieved 2018-07-06.

[BHK+16a] Kristopher Born, Frank Hermann, Timo Kehrer, Christian Krause, Daniel
Strüber, and Matthias Tichy. Henshin, 2016. Available at https://www.

eclipse.org/henshin/. Retrieved 2018-03-07.

[BHK+16b] Kristopher Born, Frank Hermann, Timo Kehrer, Christian Krause, Daniel
Strüber, and Matthias Tichy. Henshin, 2016. Available at https://wiki.

eclipse.org/Henshin. Retrieved 2018-03-07.

[BHRV08] Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró. A Bench-
mark Evaluation of Incremental Pattern Matching in Graph Transformation.
In Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer,

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 77

https://github.com/eMoflon/emoflon-docu/releases/download/emoflon_2.32.0/eMoflonHandbook.pdf
https://github.com/eMoflon/emoflon-docu/releases/download/emoflon_2.32.0/eMoflonHandbook.pdf
http://emoflon.org/
https://paper.dropbox.com/doc/GxyQmS2198CgxBhOCj8Hv
https://paper.dropbox.com/doc/GxyQmS2198CgxBhOCj8Hv
https://paper.dropbox.com/doc/siVjGl9SaMSuBnBYEv6cG
https://paper.dropbox.com/doc/siVjGl9SaMSuBnBYEv6cG
https://pdfs.semanticscholar.org/b500/bf90a2d00040894da69c876eafe64ed20602.pdf
https://pdfs.semanticscholar.org/b500/bf90a2d00040894da69c876eafe64ed20602.pdf
http://soft.vub.ac.be/Publications/2012/vub-soft-tr-12-13.pdf
http://soft.vub.ac.be/Publications/2012/vub-soft-tr-12-13.pdf
https://www.eclipse.org/henshin/
https://www.eclipse.org/henshin/
https://wiki.eclipse.org/Henshin
https://wiki.eclipse.org/Henshin

editors, Proceedings of the 4th International Conference on Graph Transfor-
mations (ICGT 2008), Leicester, United Kingdom, September 7-13, 2008,
pages 396–410, Berlin, Heidelberg, 2008. Springer. Available at https://

link.springer.com/chapter/10.1007/978-3-540-87405-8_27. Retrieved
2018-03-07.

[CFH+08] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy
Schürr, and James F. Terwilliger. Bidirectional Transformations: A Cross-
Discipline Perspective, 2008. Available at http://www.cs.cornell.edu/

~jnfoster/papers/grace-report.pdf. Retrieved 2018-03-07.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-Based Survey of
Model Transformation Approaches, 2006. Available at https://pdfs.

semanticscholar.org/7eca/ca8db190608dc4482999e19b1593cc6ad4e5.

pdf. Retrieved 2018-05-26.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fun-
damentals of Algebraic Graph Transformation. Springer-Verlag, Berlin, Hei-
delberg, 2006.

[EHK+97] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Cor-
radini. Algebraic Approaches to Graph Transformation – Part II: Single
Pushout Approach and Comparison with Double Pushout Approach. In Grze-
gorz Rozenberg, editor, Handbook of Graph Grammars and Computing by
Graph Transformation – Volume 1, pages 247–312, Singapore, 1997. Worlds
Scientific Publishing Co. Pte. Ltd.

[HMS05] Jan Heering, Marjan Mernik, and Anthony M. Sloane. When and how to de-
velop domain-specific languages. In ACM Computing Surveys (CSUR) Sur-
veys Homepage archive Volume 37 Issue 4, pages 316–344, New York, 2005.
ACM. Available at http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.84.4178&rep=rep1&type=pdf. Retrieved 2018-03-07.

[HP16] Ivaylo Hristakiev and Detlef Plump. Attributed Graph Transformation via
Rule Schemata: Church-Rosser Theorem, 2016. Available at https://link.
springer.com/book/10.1007/978-3-319-50230-4. Retrieved 2018-07-02.

[HVRU17] Abel Hegedus, Daniel Varro, Istvan Rath, and Zoltan Ujhelyi. VIATRA 1.6
is out with Eclipse Oxygen, 2017. Available at https://www.eclipse.org/

viatra/. Retrieved 2018-03-07.

[JBG17a] Edgar Jakumeit, Jakob Blomer, and Rubino Geiß. GrGen.NET, 2017. Avail-
able at http://www.info.uni-karlsruhe.de/software/grgen/. Retrieved
2018-03-07.

[JBG17b] Edgar Jakumeit, Jakob Blomer, and Rubino Geiß. The GrGen.NET
User Manual, 2017. Available at http://www.info.uni-karlsruhe.de/

software/grgen/GrGenNET-Manual.pdf. Retrieved 2018-03-07.

78 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

https://link.springer.com/chapter/10.1007/978-3-540-87405-8_27
https://link.springer.com/chapter/10.1007/978-3-540-87405-8_27
http://www.cs.cornell.edu/~jnfoster/papers/grace-report.pdf
http://www.cs.cornell.edu/~jnfoster/papers/grace-report.pdf
https://pdfs.semanticscholar.org/7eca/ca8db190608dc4482999e19b1593cc6ad4e5.pdf
https://pdfs.semanticscholar.org/7eca/ca8db190608dc4482999e19b1593cc6ad4e5.pdf
https://pdfs.semanticscholar.org/7eca/ca8db190608dc4482999e19b1593cc6ad4e5.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.4178&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.4178&rep=rep1&type=pdf
https://link.springer.com/book/10.1007/978-3-319-50230-4
https://link.springer.com/book/10.1007/978-3-319-50230-4
https://www.eclipse.org/viatra/
https://www.eclipse.org/viatra/
http://www.info.uni-karlsruhe.de/software/grgen/
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf

[KC15a] Nafiseh Kahani and James R. Cordy. Comparison and Evaluation of Model
Transformation Tools, 2015. Available at http://research.cs.queensu.

ca/TechReports/Reports/2015-627.pdf. Retrieved 2018-03-07.

[KC15b] Nafiseh Kahani and James R. Cordy. Comparison of Model Transformation
Tools, 2015. Available at http://www.mdetools.com/. Retrieved 2018-03-07.

[Koz16] Sergejs Kozlovics. Models and Model Transformations Within Web Applica-
tions. In Proceedings of the 12th International Baltic Conference (DB & IS
2016), Riga, Latvia, July 4-6, 2016, pages 53–67, Cham, 2016. Springer Inter-
national Publishing. Available at https://link.springer.com/chapter/

10.1007/978-3-319-40180-5_4. Retrieved 2018-03-07.

[Kur05] Ivan Kurtev. Building adaptable and reusable XML applications with model
transformations, 2005. Available at https://dl.acm.org/ft_gateway.cfm?
id=1060772&ftid=314066&dwn=1&CFID=1012139749&CFTOKEN=52595033.

[Obj15] Object Management Group. About the Unified Modeling Language Spec-
ification Version 2.5, 2015. Available at http://www.omg.org/spec/UML/.
Retrieved 2018-03-07.

[PGH+16] David Priemer, Tobias George, Marcel Hahn, Lennert Raesch, and Albert
Zündorf. Using Graph Transformation for Puzzle Game Level Generation and
Validation. In Proceedings of the 9th International Conference (ICGT 2016),
Vienna, Austria, July 5-6, 2016, pages 223–235, Cham, 2016. Springer Inter-
national Publishing. Available at https://link.springer.com/content/

pdf/10.1007%2F978-3-319-40530-8_14.pdf. Retrieved 2018-05-26.

[RdMZ17] Arend Rensink, Maarten de Mol, and Eduardo Zambon. GROOVE - GRaphs
for Object-Oriented VErification, 2017. Available at http://groove.cs.

utwente.nl/. Retrieved 2018-03-07.

[Run06] Olga Runge. The AGG 1.5.0 Development Environment. The User Man-
ual, 2006. Availbale at http://www.user.tu-berlin.de/o.runge/agg/

AGG-ShortManual/AGG-ShortManual.html. Retrieved 2018-03-07.

[Run17] Olga Runge. The Attributed Graph Grammar System: A Development En-
vironment for Attributed Graph Transformation Systems, 2017. Available at
http://www.user.tu-berlin.de/o.runge/agg/. Retrieved 2018-03-07.

[Sch95] Andy Schürr. Specification of Graph Translators with Triple Graph Gram-
mars. In Proceedings of the 20th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG ’94), Herrsching, Germany, June 16-
18, 1994, pages 151–163, Berlin, Heidelberg, 1995. Springer-Verlag. Avail-
able at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

457.5219&rep=rep1&type=pdf. Retrieved 2018-05-26.

[Sol12] Solunar GmbH. EMorF documentation, 2012. Available at http://www.

emorf.org/doc.html. Retrieved 2018-03-07.

Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX 79

http://research.cs.queensu.ca/TechReports/Reports/2015-627.pdf
http://research.cs.queensu.ca/TechReports/Reports/2015-627.pdf
http://www.mdetools.com/
https://link.springer.com/chapter/10.1007/978-3-319-40180-5_4
https://link.springer.com/chapter/10.1007/978-3-319-40180-5_4
https://dl.acm.org/ft_gateway.cfm?id=1060772&ftid=314066&dwn=1&CFID=1012139749&CFTOKEN=52595033
https://dl.acm.org/ft_gateway.cfm?id=1060772&ftid=314066&dwn=1&CFID=1012139749&CFTOKEN=52595033
http://www.omg.org/spec/UML/
https://link.springer.com/content/pdf/10.1007%2F978-3-319-40530-8_14.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-40530-8_14.pdf
http://groove.cs.utwente.nl/
http://groove.cs.utwente.nl/
http://www.user.tu-berlin.de/o.runge/agg/AGG-ShortManual/AGG-ShortManual.html
http://www.user.tu-berlin.de/o.runge/agg/AGG-ShortManual/AGG-ShortManual.html
http://www.user.tu-berlin.de/o.runge/agg/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.5219&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.5219&rep=rep1&type=pdf
http://www.emorf.org/doc.html
http://www.emorf.org/doc.html

[Sto17] Florian Stolte. Exploiting the modularity of triple graph grammars via in-
cremental pattern matching techniques, 2017.

[SV06] Thomas Stahl and Markus Völter. Model-Driven Software Development. John
Wiley & Sons Ltd, Chichester, 2006. Available at http://www.voelter.de/
data/books/mdsd-en.pdf.

[SVM+16] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Si-
mon Van Mierlo, Huseyin Ergin, and Jonathan Corley. AToMPM Documen-
tation, 2016. Available at https://msdl.uantwerpen.be/documentation/

AToMPM/. Retrieved 2018-03-07.

[VAS12] Gergely Varró, Anthony Anjorin, and Andy Schürr. Unification of Com-
piled and Interpreter-Based Pattern Matching Techniques, 2012. Available
at http://tuprints.ulb.tu-darmstadt.de/2922/1/29220.pdf.

[VVS06] Gergely Varró, Daniel Varró, and Andy Schürr. Incremental Graph Pat-
tern Matching: Data Structures and Initial Experiments. In Proceedings
of the Second International Workshop on Graph and Model Transforma-
tion (GraMoT 2006), Brighton, United Kingdom, September 8, 2006, Berlin,
2006. Electronic Communications of the EASST. Available at https:

//journal.ub.tu-berlin.de/eceasst/article/view/12/4, detailed ver-
sion with appendix: http://www.cs.bme.hu/~gervarro/publication/

IncrementalEngine.pdf. Retrieved 2018-03-07.

[Web16] Jens H. Weber. Grape - Graph Rewriting And Persistence Engine, 2016.
Available at https://jenshweber.github.io/grape/ Retrieved 2018-03-07.

[Web17] Jens H. Weber. GRAPE – A Graph Rewriting and Persistence Engine. In
Juan de Lara and Detlef Plump, editors, Proceedings of the 10th International
Conference (ICGT 2017), Marburg, Germany, July 18-19, 2007, pages 209–
220, Cham, 2017. Springer International Publishing. Available at https:

//link.springer.com/chapter/10.1007/978-3-319-61470-0_13.

[Wei18] Nils Weidmann. Consistency Management via a Combination of Triple Graph
Grammars and Integer Linear Programming, 2018.

80 Incremental Unidirectional Model Transformation via Graph Transformation with eMoflon::IBeX

http://www.voelter.de/data/books/mdsd-en.pdf
http://www.voelter.de/data/books/mdsd-en.pdf
https://msdl.uantwerpen.be/documentation/AToMPM/
https://msdl.uantwerpen.be/documentation/AToMPM/
http://tuprints.ulb.tu-darmstadt.de/2922/1/29220.pdf
https://journal.ub.tu-berlin.de/eceasst/article/view/12/4
https://journal.ub.tu-berlin.de/eceasst/article/view/12/4
http://www.cs.bme.hu/~gervarro/publication/IncrementalEngine.pdf
http://www.cs.bme.hu/~gervarro/publication/IncrementalEngine.pdf
https://jenshweber.github.io/grape/
https://link.springer.com/chapter/10.1007/978-3-319-61470-0_13
https://link.springer.com/chapter/10.1007/978-3-319-61470-0_13

	Abstract
	Table of Contents
	Introduction
	Graphs and Graph Transformations
	eMoflon::IBeX
	Running Example: She Remembered Caterpillars
	Contribution
	Structure of the Thesis

	Fundamentals of Graph Transformations
	Typed Graphs
	Rule Applications
	Application Conditions

	Requirements
	Related Work
	Graph Transformation Tools
	Comparison of Existing Graph Transformation Tools

	Patterns in eMoflon::IBeX-GT
	eMoflon::IBeX Architecture
	Transformation of Graph Transformation Rules into IBeX Patterns
	Nodes and References
	Attribute Assignments and Conditions
	Applications Conditions
	Negative Application Conditions
	Positive Application Conditions
	Disjunctions

	Pattern Refinement

	Pattern Networks
	IBeX Pattern Networks
	Democles Pattern Networks

	Graph Transformation Java API
	Code Generation for a Typed Java API
	Graph Transformation Interpreter
	Usage of the API
	Initialization and Conventions on EMF Resources
	Model Queries
	Rule Applications and Pushout Approaches (DPO vs. SPO)
	Node Bindings
	Parameters

	Exploiting the Incrementality
	Notification System
	Instant Automatic Rule Application

	Evaluation
	Compliance with the Requirements
	Correctness of Graph Transformation
	Validation in the Textual Editor
	Performance and Scalability
	Usability and End-User Feedback
	Experience of the participants
	Textual and Visual Syntax
	Language Features
	Potential for the Usage in Java Applications
	Handbook

	Conclusion and Future Work
	Evaluation of Performance
	Optimization of the Pattern Network
	Shared Patterns with eMoflon::IBeX-TGG
	Applications using Graph Transformation and TGG
	Expressiveness of the Graph Transformation Rules
	Improvements to the Editor

	List of Projects
	List of Figures
	List of Tables
	Listings
	Bibliography

